Physics from πN and μN scattering at COMPASS-II

- COMPASS-II
- $\pi p^{\uparrow} \rightarrow \mu \mu X$: TMDs from polarized DY
- $\mu^{\pm i} p \rightarrow \mu h X$: FFs and TMDs from SIDIS
- $\mu^{\pm i} p \rightarrow \mu p \gamma$ or $\mu p M$: GPDs from hard exclusive reactions

On behalf of the

NSF

OMPA

collaboration

Outlook

Caroline Riedl

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

COMPASS

= COmmon Muon and Proton Apparatus for Structure and Spectroscopy

A multi-purpose facility

Large Hadron Collider **Bird view of CERN** European Organization for Nuclear Research

data taking since 2002

218 physicists from24 institutions and12 countries + CERN

SPS

Main CERN site

COMPA

Beams

400 GeV SPS protons onto conversion target \Rightarrow mesons with intensity up to 10⁸ particles/s

h⁻ beam: 190 GeV, $\pi/K/p$ 97/2/1%

TMD run (Drell-Yan): 2015

on transversely polarized NH₃ target commissioning run end of 2014

GPD run (with SIDIS): 2016/17

on unpolarized liquid hydrogen target

Probing the partonic structure of hadrons

Nucleon Tomography

TMDs in spin-dependent Drell-Yan

• Are Sivers and Boer-Mulders **universal**?

- Expect **sign switch** of these naïve time-reversal-odd TMDs in <u>DY</u> wrt <u>SIDIS</u>: fundamental QCD prediction due to gauge invariance

- Experimental verification: crucial test of non-perturbative QCD and TMD physics Origin of large Single Spin Asymptotics $p^{\uparrow}p \rightarrow \pi X$ at ENAL and BNL 2
 - Origin of large Single Spin Asymmetries $p^{\uparrow}p \rightarrow \pi X$ at FNAL and BNL?
 - Validity of QCD factorization?

 \square <u>criedl@illinois.edu</u> - COMPASS-II μ N and π N

Angular dependence of Drell-Yan cross section

Spin-integrated cross section:

Angular dependence of Drell-Yan cross section

Pion-induced Drell-Yan at COMPASS-II

Phase space of COMPASS-II Drell-Yan data

criedl@illinois.edu - COMPASS-II μ N and π N

9

Sivers asymmetry: predictions

<u>criedl@illinois.edu</u> - COMPASS-II μ N and π N

COMPASS polarized Drell-Yan: projections

COMPASS-II projections and beam test

criedl@illinois.edu - COMPASS-II μN and πN

COMPASS-II projections and beam test

criedl@illinois.edu - COMPASS-II μN and πN

13

COMPASS-II SIDIS program

- Previously (2002-2011): SIDIS with polarized targets To come (2016/17): SIDIS with unpolarized target (long liquid hydrogen) in parallel to GPD run
- Flavor separation: proton + deuteron data and advanced hadron PID.
- Precise mapping in 4 dimensions: x, Q^2 , p_T^2 , z
- Global QCD analyses to constrain unpolarized PDFs and quark Fragmentation Functions
- Strange-quark **Distribution Function** s(x)
 - So far uncovered region 0.001 <x < 0.2
 - Higher average Q² and W than existing HERMES data
- TMDs in SIDIS: BM and Cahn-effect depending on k_T, the intrinsic transverse momentum of quarks

(SI)DIS

Strange-quark distribution in the proton

Multiplicity for hadron type $h=\pi^+,\pi^-,\pi^0,K^+,K^-,K^0,\Lambda,\overline{\Lambda}$

$\mathrm{d}N^h(x,z,Q^2)$ _	$\sum_{q} e_q^2 q(x,Q^2) D_q^h(z,Q^2)$
$\mathrm{d}N^{\mathrm{DIS}}$ –	$\sum_{q} e_q^2 q(x, Q^2)$

Re-evaluation. Details see Hal Jackson at DIS13

Cosine modulations in hadrons off the unpolarized proton

SIDIS cos(2Φ)-modulation

BM ⊗ Collins

SIDIS cos Φ -modulation

QCD Frontier 2013, Newport News, October 21, 2013

Hard-exclusive reactions

$$lp \to lp\gamma$$

 $lp \to lpM$

Deeply Virtual Compton Scattering (**DVCS**)

Deeply Virtual Meson Production (**DVMP**)

Transverse imaging: transverse size of nucleus

Generalized Parton Distributions

<u>criedl@illinois.edu</u> - COMPASS-II μN and πN

<u>criedl@illinois.edu</u> - COMPASS-II μ N and π N

GPD program at COMPASS-II

- 2016/17 (phase 1): LH₂ target + long recoil detector
 transverse imaging from DVCS and DVMP
 - GPD H from DVCS

$$\mathcal{S}_{CS,U} \equiv \mathrm{d}\sigma^{\stackrel{+}{\leftarrow}} + \mathrm{d}\sigma^{\stackrel{-}{\rightarrow}} = 2(\mathrm{d}\sigma^{\mathrm{BH}} + \mathrm{d}\sigma^{\mathrm{DVCS}}_{\mathrm{unpol}} + e_{\mu}P_{\mu}\mathrm{Im}\mathcal{I})$$

$$\mathcal{D}_{CS,U} \equiv \mathrm{d}\sigma^{\stackrel{+}{\leftarrow}} - \mathrm{d}\sigma^{\stackrel{-}{\rightarrow}} = 2(P_{\mu}\mathrm{d}\sigma^{\mathrm{DVCS}}_{\mathrm{pol}} + e_{\mu}\mathrm{Re}\,\mathcal{I})$$

DVCS is special: allows separation of real and imaginary parts of DVC scattering amplitude

х

 $H^u(x,\xi,t=0)$

0.5

integral of

GPDs over x

5

2.5

$$\operatorname{Im} \mathcal{H}(\xi, t, Q^2) \stackrel{\mathrm{LO}}{=} \pi \sum_{f} e_f^2 \left(H^f(\xi, \xi, t, Q^2) \mp H^f(-\xi, \xi, t, Q^2) \right)$$
$$\operatorname{Re} \mathcal{H}(\xi, t, Q^2) \stackrel{\mathrm{LO}}{=} \sum_{f} e_q^2 \left[\mathcal{P} \int_{-1}^{1} \mathrm{d}x \ H^f(x, \xi, t, Q^2) \left(\frac{1}{x - \xi} \mp \frac{1}{x + \xi} \right) \right]$$

+ link to D-term

q(x)

0.4

0.6 \$

GPDs @ x=ξ

0.2

- >2017 (phase 2 (?)): NH₃↑ target + recoil detector
 - GPD E from DVCS

@COMPASS:

H-dominance

- GPD E and chiral-odd GPDs from DVMP
 - vector mesons ρ^0 , ρ^+ , ω , Φ
 - pseudoscalar mesons π^0
- Mesons allow access to different GPD combinations

For ρ⁰ mesons, selection of exclusive data sample feasible without recoil-proton detection. Results exist from 2007-2010 transversely polarized data.

Detector upgrades for GPD run

COMPASS-II projection for t-slope

2 years of data

beam energy 160 GeV $4 \cdot 10^8 \ \mu^+$ /spill (μ^- 2.6x less) duration 9.6s every 48s 2.5m target Lumi= $10^{32} \ cm^{-2}s^{-1}$ $\epsilon_{global} = 10\%$

Regge-trajectory ansatz $b(x_B) = b_0 + 2\alpha' ln(x_0/x_B)$

 $\label{eq:alpha} \begin{aligned} \alpha' &\simeq 0.25 \ GeV^{\text{-2}} \\ \text{soft pomeron} \end{aligned}$

1-bin-extraction already possible from DVCS test in 2012

COMPASS-II projections for spin & charge asym.

24

Global analysis of DVCS data

QCD Frontier 2013, Newport News, October 21, 2013

<u>criedl@illinois.edu</u> - COMPASS-II μ N and π N

25

Outlook: COMPASS-II

Pion-induced Drell-Yan:

- Pions as alternative probe to test nuclear models and meson structure (not accessible in DIS)
- Flavor dependence: pion (or meson in general) is specific qqbar compound

Beyond 2017?

- Drell-Yan
 - Universality of TMDs (higher statistics p[†])
 - Flavor dependence (d^{\uparrow})
 - Test of Lam-Tung relation (p)
 - EMC effect in DY (nuclear targets) maybe earlier!

• SIDIS

- d-quark transversity with same precision as u-quark transversity (d[↑])
- Sivers-function evolution (lower beam energy of 100 GeV)
- GPD

GPD E (p[↑] with recoil detector)

<u>criedl@illinois.edu</u> - COMPASS-II μ N and π N

W.-C. Chang and D. Dutta, The pionic Drell-Yan process: a brief survey. International Journal of Modern Physics E, Vol. 22, No. 8 (2013) 1330020. arXiv:1306.3971

> Not approved (yet). Not decided (yet).

Summary: COMPASS-II

• 2015: Drell-Yan

First polarized Drell-Yan measurement ever!

Also first and only meson-induced DY since more than 25 years.

- TMD universality in Drell-Yan vs. SIDIS?
- Sign switch of time-reversal-odd TMDs?
- 2016/17: **SIDIS**
 - High-statistics data acquisition for constraints of unpol. PDFs and quark FFs
 - Effects of quark transverse momentum in the unpolarized nucleon
- 2016/17: **GPDs**
 - GPD H from helicity-dependent and -averaged cross section
 - Transverse imaging
- Outlook: measure Drell-Yan on nuclear targets?
 Beyond 2017: plans for 2nd Drell-Yan run. Possibly measure GPD E.

COMPASS-II 2010 proposal recommended by SPSC and approved by the Research Board for a first period of **3 years** including I year for **Drell-Yan** and 2 years for **GPDs**.

http://www.compass.cern.ch/ compass/proposal/compass-II_proposal/compass-II_proposal.pdf

Thank you for material to: A. Ferrero, O. Denisov, C. Quintans, E. Zemlyanichkina, N. D'Hose!criedl@illinois.eduCOMPASS-II μN and πN27QCD Frontier 2013, Newport News, October 21, 2013

The transversely polarized NH₃ target

The hadron absorber

Structure of the hadron absorber:

- 120cm tungsten beam plug
- aluminium conical part
- 200cm alumina (Al₂O₃)
- Stainless steel shielding sandwiches

+ absorber surrounded by 2m of iron-free concrete on each side

Minimize multiple scattering of muons and maximize stopping power for hadrons.

Transverse-Momentum Dependent PDFs (TMDs)

Fragmentation Function (FF)

➡ TMDs depend on the longitudinal <u>and</u> <u>transverse</u> momentum of a parton inside a hadron.

 Describe strength of various <u>spin-spin or</u> <u>spin-orbit correlations</u> of the parton-hadron system.

Future Drell-Yan experiments

- Programs for <u>future Drell-Yan</u> measurements: nucleon-nucleon at
 - SeaQuest (Fermilab)
 - RHIC (Brookhaven)
 - J-PARC (KEK)
 - IHEP (Protvino)
 - JINR (Dubna)

anti(p)-nucleon at

- FAIR (GSI)

pion-nucleon at

- <u>COMPASS (CERN)</u>

Only existing meson plan!

- Past measurements exclusively considered the unpolarized cross section, future ones also aim for <u>polarization measurements</u>.
 - transversely polarized DY: spin-dependent TMDs
 - longitudinally polarized DY: quark helicity