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2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:

gq1 (x) = q
�!) (x)�q�!( (x) . (2.11)

The momentum distribution measuring the spin average is given by the sum of these probabilities:

f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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TABLE IV: Truncated first moments, ∆f1,[0.001→1]
i , and full ones, ∆f1

i , of our polarized PDFs at various Q2.

x-range in Eq. (35) Q2 [GeV2] ∆u + ∆ū ∆d + ∆d̄ ∆ū ∆d̄ ∆s̄ ∆g ∆Σ
0.001-1.0 1 0.809 -0.417 0.034 -0.089 -0.006 -0.118 0.381

4 0.798 -0.417 0.030 -0.090 -0.006 -0.035 0.369
10 0.793 -0.416 0.028 -0.089 -0.006 0.013 0.366
100 0.785 -0.412 0.026 -0.088 -0.005 0.117 0.363

0.0-1.0 1 0.817 -0.453 0.037 -0.112 -0.055 -0.118 0.255
4 0.814 -0.456 0.036 -0.114 -0.056 -0.096 0.245
10 0.813 -0.458 0.036 -0.115 -0.057 -0.084 0.242
100 0.812 -0.459 0.036 -0.116 -0.058 -0.058 0.238
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FIG. 3: Our polarized PDFs of the proton at Q2 = 10 GeV2

in the MS scheme, along with their ∆χ2 = 1 uncertainty
bands computed with Lagrange multipliers and the improved
Hessian approach, as described in the text.

tendency to turn towards +1 at high x. The latter be-
havior would be expected for the pQCD based models.
We note that it has recently been argued [73] that the
upturn of Rd in such models could set in only at rela-
tively high x, due to the presence of valence Fock states of
the nucleon with nonzero orbital angular momentum that
produce double-logarithmic contributions ∼ ln2(1−x) in
the limit of x → 1 on top of the nominal power behav-
ior. The corresponding expectation is also shown in the
figure. In contrast to this, relativistic constituent quark
models predict Rd to tend to −1/3 as x → 1, perfectly
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FIG. 4: Uncertainties of the calculated Aπ0

LL at RHIC in our
global fit, computed using both the Lagrange multiplier and
the Hessian matrix techniques. We also show the correspond-
ing PHENIX data [23].

consistent with the present data.

Light sea quark polarizations: The light sea quark and
anti-quark distributions turn out to be better constrained
now than in previous analyses [36], thanks to the advent
of more precise SIDIS data [10, 14, 15, 16] and of the new
set of fragmentation functions [37] that describes the ob-
servables well in the unpolarized case. Figure 6 shows the
changes in χ2 of the fit as functions of the truncated first
moments ∆ū1,[0.001→1], ∆d̄1,[0.001→1] defined in Eq. (35),
obtained for the Lagrange multiplier method. On the
left-hand-side, Figs. 6 (a), (c), we show the effect on the
total χ2, as well as on the χ2 values for the individual
contributions from DIS, SIDIS, and RHIC pp data and
from the F, D values. It is evident that the SIDIS data
completely dominate the changes in χ2. On the r.h.s. of
the plot, Figs. 6 (b), (d), we further split up ∆χ2 from
SIDIS into contributions associated with the spin asym-
metries in charged pion, kaon, and unidentified hadron
production. One can see that the latter dominate, closely
followed by the pions. The kaons have negligible impact
here. For ∆ū1,[0.001→1], charged hadrons and pions are
very consistent, as far as the location of the minimum
in χ2 is concerned. For ∆d̄1,[0.001→1] there is some slight
tension between them, although it is within the tolerance
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f q1 (x) = q
�!) (x)+q

�!( (x) . (2.12)

Transversely polarised nucleons In the basis of transverse spin eigenstates ("+ and "*), the
transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:

hq1 (x) = q"* (x)�q"+ (x) . (2.13)

The probabilistic interpretation of these parton distribution functions is illustrated in table 2.1.
Differences between the helicity and transversity distributions are a consequence of the relativistic

motion of the quarks within the nucleon. Euclidean rotations and Lorentz boosts do not commute
and thus longitudinally polarised nucleons cannot be converted in transversely polarised nucleons at
infinite momentum. Only in case of non-relativistic quarks both distributions would be identical.
Another difference emerges from an analysis of helicity amplitudes. Forward quark-nucleon

scattering amplitudes AΛlΛ0l 0 , labelled by the helicities of quarks (l (0) = ±1
2 ⌘ ±) and nucleons

(Λ(0) = ±1
2 ⌘ ±), represent the absorption of a quark (l ) from a nucleon (Λ) and the subsequent

emission of the quark (l 0) by the nucleon (Λ0). Due to conservation of helicity, Λ+ l = Λ0 + l

0,
parity, AΛlΛ0l 0 = A�Λ�l�Λ0�l

0 and time reversal there are exactly three independent amplitudes:

A++,++, A+�,+� A+�,�+. (2.14)

The optical theorem relates the forward quark-nucleon scattering amplitudes to the cross section of
deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:

f q1 (x)⇠ℑ[A++,++ +A+�,+�], (2.15)
gq1 (x)⇠ℑ[A++,++�A+�,+�], (2.16)

1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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2. Spin-orbit correlations in the nucleon

At leading twist (twist-two) three parton distribution functions characterise momentum and spin of
the quarks within the nucleon [Jaf97]. In addition to the momentum distribution f q1 (x) 1, introduced
in the discussion of the parton model (section 2.1.2) , two spin-dependent functions appear: the helic-
ity distribution gq1 (x) and the transversity distribution h

q
1 (x) [RS79, AM90, JJ91]. Spin-dependent

parton distribution functions can measured in polarised deep-inelastic scattering processes:

Longitudinally polarised nucleons The helicity distribution can be probed in deep-inelastic
scattering of spin-polarised leptons off nucleons spin-polarised in directions longitudinal to the in-
coming leptons. The virtual photon, inheriting the lepton polarisation to a degree given by the lepton
kinematics, can only interact with quarks polarised in opposite direction. This is a consequence of
helicity conservation in the absorption of a spin-1 virtual photon by a spin-12 quark (g

⇤q! q). As
the virtual photon selects only quarks of one polarisation, measurements of the cross section for
anti-parallel (�!() or parallel polarisations (�!)) of lepton (!) and target nucleons ()) are sensitive
to number densities q of quarks polarised along or against the nucleon polarisation. In the infinite
momentum frame, these number densities are related to the helicity distribution gq1 (x), defined as
the difference of the probability to find a quark polarised along or against the nucleon in a helicity
eigenstate:
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transversity distribution hq1 (x) measures the difference of the number densities of transversely po-
larised quarks aligned along or against the polarisation of the nucleon:
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0 and time reversal there are exactly three independent amplitudes:
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deep-inelastic scattering. Parton distribution functions can be considered as imaginary part of these
amplitudes [Jaf97]: The momentum and helicity distributions correspond to amplitudes that conserve
quark helicity:
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1Here and henceforth, the weak scale dependence of the parton distribution functions is omitted.
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They all access transversity via
single or double spin 

asymmetries, f.i.:

AUT∝

AUT∝

ATT∝

How well do we know the unpolarized 
cross-sections? In particular the TMD 

unpolarized ones?

PT∝
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(SIDIS)
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Transversity distribution
First access in SIDIS

Interference 
FF

Collinear

AUT∝ h1   x  H1
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⪦
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⪦q Ph⊥

Ph⊥

Transversity coupled with a 
Fragmentation Function (FF)

TMD
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Transversity distribution
First access in SIDIS

Interference 
FF

Collinear

AUT∝ h1   x  H1
⊥0

AUT∝ h1   x  H1
⪦

H1
⪦q Ph⊥

Ph⊥

Transversity coupled with a 
Fragmentation Function (FF)

TMD

∫ h1 (x,pT)  H1 (x,kT)  dpT dkT
⊥

(and same in the denominator for 
the unpolarized pdfs and ffs)

direct product!
(same in the denominator)
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Transversity distribution
First access in SIDIS

Collins 
FF

Transversity coupled with a 
Fragmentation Function (FF)

TMD

Complementary reactions

TMD factorization assumed

FF universality assumed
M. Anselmino et al., 
PRD75:054032, 2007
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PRD75:054032, 2007
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TMD
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TMD pT dependence?
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Transversity distribution
First access in SIDIS
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Fragmentation Function (FF)

TMD
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107:012001,2011

Interference 
FF

AUT∝ h1   x  H1
⪦

Collinear

Transversity and Collins Gaussian pT 
dependence assumed

TMD factorization assumed

FF universality assumed



Francesca Giordano 30

Transversity distribution
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Single hadron
But! the asymmetry for single 

hadron comes mixed with other 
effects (Sivers, higher twist)TMD
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Transversity distribution
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distribution within the jet
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Transversity distribution
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Word of caution:  TMD factorization 
broken in pp➛hadrons
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Transversity distribution
Access in fully polarized Drell-Yan

Double Spin asymmetry:
ATT∝ h1   x  h1 Cleanest theoretical access: 

➛ no input needed for fragmentation functions
➛ Collinear case

To enhance the signal both quark and anti-quark 
should come from the valence region
- medium-high x region
- preferable beam/target combination, f.i.:
  proton/anti-proton (PAX, GSI) pion/proton (COMPASS, CERN)
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Double Spin asymmetry:
ATT∝ h1   x  h1 Cleanest theoretical access: 

➛ no input needed for fragmentation functions
➛ Collinear case

But experimentally challenging: 
➛ low cross-section
➛ background cleaning
➛ anti-proton polarization still not proven to work

To enhance the signal both quark and anti-quark 
should come from the valence region
- medium-high x region
- preferable beam/target combination, f.i.:
  proton/anti-proton (PAX, GSI) pion/proton (COMPASS, CERN)

Transversity distribution
Access in fully polarized Drell-Yan
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                                                                                                                                            breaking

SIDIS Collins                          medium x                    high x                                     TMD Evolution
                                                       measurement of (un)polarized                                                                                     

                                                       pdfs and FF pT dependence 

SIDIS IFF                               medium x                 high x                  
                                                     

Present Status 

36
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Drell-Yan                                no data!                        precise                                   
                                                   measurements! 

Jlab: Hall A&B

STAR

STAR

theoretical input  
needed
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... not there yet ...
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... but we took a few 
feathers off ...
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... and planning new 
experiments ...
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Stay tuned!

41

Thank you!


