Chasing Transversity

Francesca Giordano QCD Frontier 2013 JLab, Newport News, VA

QCD Frontier 2013

Proton Structure

Proton Structure

Momentum distribution

Helicity distribution

helicity flip!

(No gluon transversity in the puzzle?) Francesca Giordano

h x X

chiral odd chiral odd chiral even observable Transversity is chiral-odd!

1. Can it be accessed? How?

Yes! But only in conjunction with another chiral-odd object

Accessible in different reactions => need of complementary reactions!

Transversity distribution

Transversity is chiral-odd!

1. Can it be accessed? How?

Yes! But only in conjunction with another chiral-odd object

Accessible in different reactions => need of complementary reactions!

-> each reaction covers specific) <u>2. Is transversity Universal?</u> kinematic ranges, and access specific features

1. Can it be accessed? How?

Yes! But only in conjunction with another chiral-odd object

Accessible in different reactions => need of complementary reactions!

-> each reaction covers specific is <u>2. Is transversity Universal?</u> kinematic ranges, and access specific features

-> reactions are at different typical \Rightarrow 3. How does transversity evolve? energies $g_1^q(x) = q^{\Rightarrow}(x) - q^{\rightleftharpoons}(x) \xrightarrow{?} h_1^q(x) = q^{\uparrow \uparrow}(x) - q^{\uparrow \Downarrow}(x)$

NOI

1. Can it be accessed? How?

Yes! But only in conjunction with another chiral-odd object

Accessible in different reactions => need of complementary reactions!

-> each reaction covers specific 🗭 <u>2. Is transversity Universal?</u> kinematic ranges, and access specific features

→ 3. How does transversity evolve? -> reactions are at different typical energies

g

no gluon transversity (in proton) and quark and gluon transversities don't mix!

1. Can it be accessed? How?

Yes! But only in conjunction with another chiral-odd object

Accessible in different reactions => need of complementary reactions!

-> each reaction covers specific 🗭 <u>2. Is transversity Universal?</u> kinematic ranges, and access specific features

→ 3. How does transversity evolve? -> reactions are at different typical energies

no gluon transversity (in proton) and quark and gluon transversities don't mix!

 $(\texttt{some of the}) \ Possible \ channels$

$(\texttt{some of the}) \ Possible \ channels$

x FF h chiral odd chiral odd

chiral even observable

h x $\Lambda_{\rm FF}$

$(\texttt{some of the}) \ Possible \ channels$

 $A_{UT} \propto h_1 \otimes Collins TMD$

 $A_{UT} \propto h_I \propto IFF$ Collinear

 $p_T \propto h_I \times \Lambda_{FF}$ Collinear

Collinear

Collinear

TMD

 $A_N \propto f_1 \times h_1 \otimes Collins$

 $A_{\rm M} \propto f_1 \times h_1 \times IFF$

ATT ~ hI x hI

$$A_{UT} = \underbrace{\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}}_{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

How well do we know the unpolarized cross-sections? In particular the TMD unpolarized ones?

 $l p^{\uparrow} \rightarrow h X,$

23

First access in SIDIS

Transversity coupled with a Fragmentation Function (FF)

$$A_{UT} \propto h_1 \otimes H_1^{\perp} \text{TMD}$$

First access in SIDIS

Complementary reactions FF universality assumed TMD factorization assumed

First access in SIDIS

Complementary reactions FF universality assumed TMD factorization assumed

Very different energies between Hermes/Compass and Belle: Is TMD evolution different from Collinear?

Collinear evolution assumed

First access in SIDIS

Complementary reactions FF universality assumed TMD factorization assumed

Very different energies between Hermes/Compass and Belle: Is TMD evolution different from Collinear?

Collinear evolution assumed

<u>Different energies at Hermes/</u> <u>Compass: how does transversity</u> <u>evolve?</u>

No evolution assumed

Which is the TMD transversity and the TMD Collins pT dependence? And the unpolarized TMD pT dependence?

Gaussian pT dependence assumed

First access in SIDIS

Complementary reactions FF universality assumed TMD factorization assumed

Very different energies between Hermes/Compass and Belle: Is TMD evolution different from Collinear?

Collinear evolution assumed

<u>Different energies at Hermes/</u> <u>Compass: how does transversity</u> <u>evolve?</u>

No evolution assumed

First access in SIDIS

Complementary reactions

FF universality assumed

TMD factorization assumed

Collinear evolution assumed

No transversity evolution assumed

Transversity and Collins Gaussian pT dependence assumed

Access in pp

But! the asymmetry for single hadron comes mixed with other effects (Sivers, higher twist)

$A_N \propto f_1 \times h_1 \times H_1^{\circ}$

$A_N \propto f_1 \times h_1 \times H_1^{\circ}$

$A_N \propto f_1 \times h_1 \times H_1^{\circ}$

Access in fully polarized Drell-Yan Double Spin asymmetry:

 $A_{TT} \propto h_1 \times h_1$

Cleanest theoretical access:

- → no input needed for fragmentation functions
- → Collinear case

To enhance the signal both quark and anti-quark should come from the valence region

- medium-high x region
- preferable beam/target combination, f.i.: proton/anti-proton (PAX, GSI) pion/proton (COMPASS, CERN)

Transversity distribution

Access in fully polarized Drell-Yan Double Spin asymmetry:

 $A_{TT} \propto h_1 \times h_1$

Cleanest theoretical access:

- → no input needed for fragmentation functions
- → Collinear case

To enhance the signal both quark and anti-quark should come from the valence region

- medium-high x region
- preferable beam/target combination, f.i.: proton/anti-proton (PAX, GSI) pion/proton (COMPASS, CERN)

But experimentally challenging:

- \rightarrow low cross-section
- ➤ background cleaning
- → anti-proton polarization still not proven to work

Present Status

		experimental input needed	theoretical input needed
SIDIS Collins Jlab: Hall A&B	medium x	high x measurement of (un)polarized pdfs and FF pT dependence	TMD Evolution
SIDIS IFF	medium x	high x	
Drell-Yan	no data!	precise measurements!	
pp IFF	medium x	high-x, precise measurements	Inclusion in global analysis
pp->jets Collins	medium x	high-x, precise measurements 36	TMD Evolution, TMD factorization breaking

Present Status

		experimental input needed	theoretical input needed
SIDIS Collins hermes V Jlab: Hall A&B Mabar	medium x	high x Jlab12 measurement of (un)polarized pdfs and FF pT dependence Belle/	TMD Evolution ar BelleII
SIDIS IFF	medium x	high x Jlab12 EIC	
Drell-Yan	no data!	COMPASSII precise PAX3 measurements! FERMILAB	?
pp IFF	medium x	high-x, precise Star SuperStan measurements FSPHENIX	r global analysis
pp->jets Collins	medium x	high-x, precise Star measurements SuperStar 37 FSPHENIX	TMD Evolution, TMD factorization breaking

... not there yet ...

... but we took a few feathers off ...

... and planning new experiments ...

Stay tuned!

Thank you!