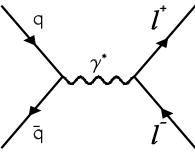
Drell-Yan experiments at Fermilab/RHIC/J-PARC

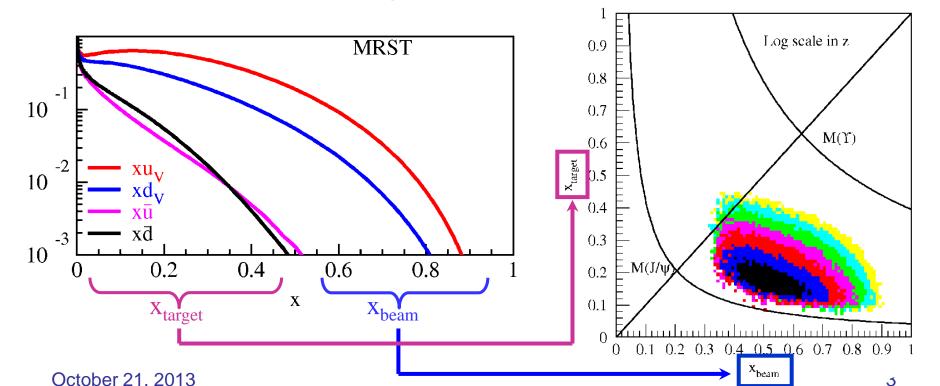
QCD Frontier 2013

Jefferson Lab


October 21, 2013

Yuji Goto (RIKEN)

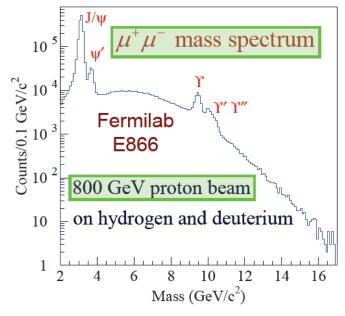
Outline


- Fermilab Drell-Yan experiments
 - Unpolarized program
 - Flavor asymmetry of sea-quark distribution
 - Boer-Mulders distribution
- Polarized Drell-Yan experiments
 - Polarized Drell-Yan proposals of Fermilab program
 - PHENIX upgrade program at RHIC
 - Possible J-PARC program

Drell-Yan experiments

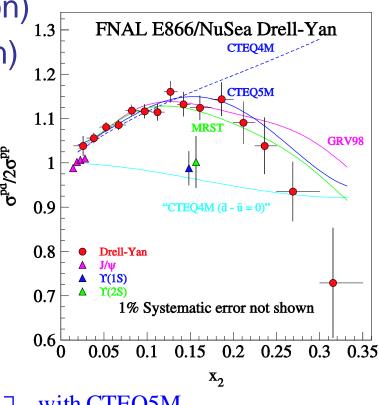
$$\frac{d^2\sigma}{dx_{\mathrm{b}}dx_{\mathrm{t}}} = \frac{4\pi\alpha^2}{x_{\mathrm{b}}x_{\mathrm{t}}s} \sum_{q \in \{u,d,s,\dots\}} e_q^2 \left[\bar{q}_{\mathrm{t}} \left(x_{\mathrm{t}} \right) q_{\mathrm{b}} \left(x_{\mathrm{b}} \right) + \bar{q}_{\mathrm{b}} \left(x_{\mathrm{b}} \right) q_{\mathrm{t}} \left(x_{\mathrm{t}} \right) \right]$$

- Fixed target experiment (e.g. at Fermilab)
 - forward detector acceptance chooses large x_b and small x_t



Flavor asymmetry of sea-quark distribution

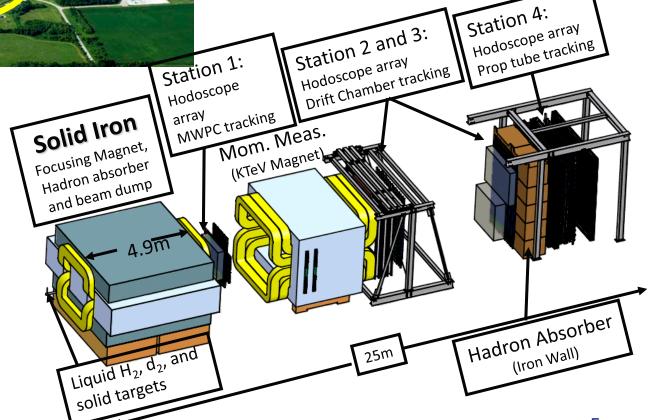
Fermilab-E866/NuSea experiment


 $-E_{beam} = 800 \text{ GeV (from Tevatron)}$

- x = 0.01 - 0.35 (valence region)

$$\frac{\sigma^{pd}}{2\sigma^{pp}} \sim \frac{1}{2} \left[1 + \frac{\overline{d}(x_2)}{\overline{u}(x_2)} \right] \quad \text{with CTEQ5M}$$

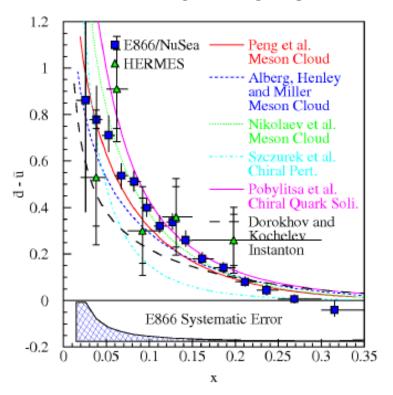
$$\int_{0.015}^{0.35} dx [\overline{d}(x) - \overline{u}(x)] = 0.0803 \pm 0.011$$

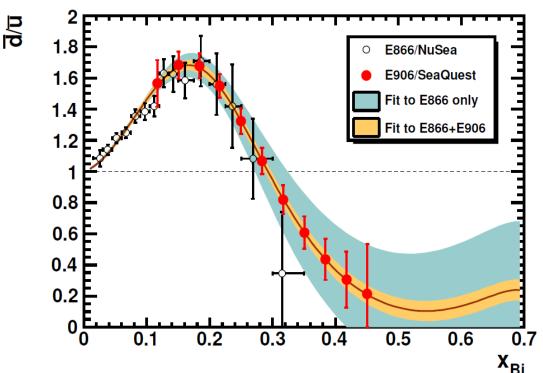

with CTEQ5M

$$\int_{0.015}^{0.35} dx [\overline{d}(x) - \overline{u}(x)] = 0.0803 \pm 0.01$$
$$\int_{0}^{1} dx [\overline{d}(x) - \overline{u}(x)] = 0.118 \pm 0.012$$

Fermilab-E906/SeaQuest experiment

- Dimuon measurement from Drell-Yan process
- 120-GeV proton beam from the Fermilab Main Injector




Fermilab-E906/SeaQuest experiment

- Nucleon structure
 - With hydrogen and deuterium targets
 - Select anti-quark distributions in hadrons
 - Flavor asymmetry of sea-quark distributions
 - Boer-Mulders distribution
- Cold Nuclear Matter (CNM)
 - With nuclear targets
 - Partonic energy loss
 - EMC effect

Flavor asymmetry of sea-quark distribution

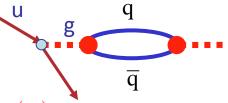
- Fermilab-E906/SeaQuest experiment
 - $-E_{beam} = 120 \text{ GeV (from Main Injector)}$
 - -x=0.1-0.45

Blue band: MSTW function refit error band

with E866 data

Yellow band: error band with E866 data +

E906 expected statistics


Flavor asymmetry of sea-quark distribution

- Competition between
 - perturbative QCD
 - gluon dissociation $\bar{d}_{\rm split}(x) = \bar{u}_{\rm split}(x) = \bar{q}_{\rm split}(x)$
 - non-perturbative contributions
 - Meson cloud model

$$|p\rangle = (1 - a - b) |p_0\rangle + a|N\pi\rangle + b|\Delta\pi\rangle + \dots$$

Chiral quark model

- Instanton model
- π^+ in the proton as an origin of anti-d quark
 - pseudo-scaler meson should have orbital angular momentum in the proton...

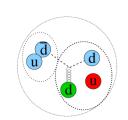
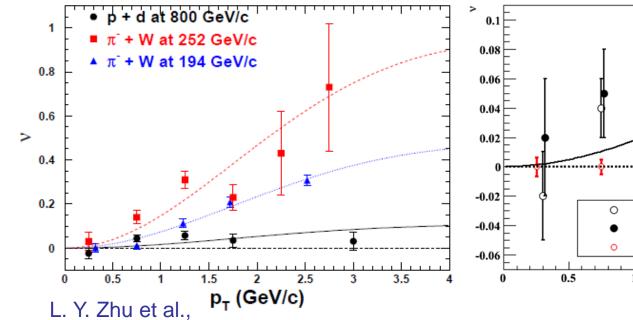


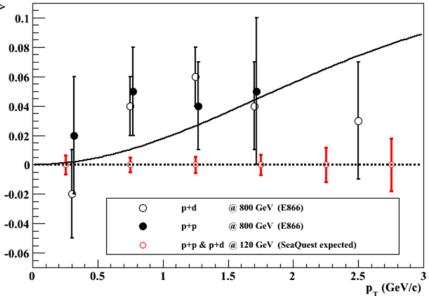
Fig. 17. Valence u quark splitting.

Drell-Yan decay angular distributions


 A general expression for Drell-Yan decay angular distributions

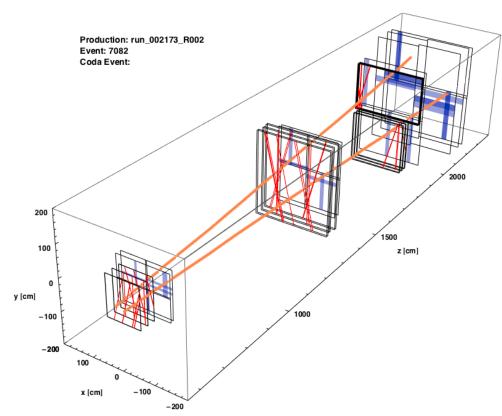
$$\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin 2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos 2\phi\right]$$

- $-\lambda$ can differ from 1, but should satisfy 1- λ =2 ν (Lam-Tung relation)
- Reflect the spin-1/2 nature of quarks (analog of the Callan-Gross relation in DIS)
- Insensitive to QCD corrections
- Violation of the Lam-Tung relation
 - v≠0 and v increases with p_T
 - Violation of the Lam-Tung relation suggests new mechanisms with non-perturbative origin


Drell-Yan decay angular distributions

- Boer-Mulders function h₁[⊥]
 - Transverse-momentum dependence of transverselypolarized partons inside the (unpolarized) nucleon
- Small v is observed for p+d and p+p
 - $-\pi^{-}+W$: [valence $h_1^{\perp}(\pi)$] \otimes [valence $h_1^{\perp}(p)$]
 - p+d and p+p: [valence $h_1^{\perp}(p)$] \otimes [sea $h_1^{\perp}(p)$]

Phys. Rev. Lett. 99 (2007) 082301

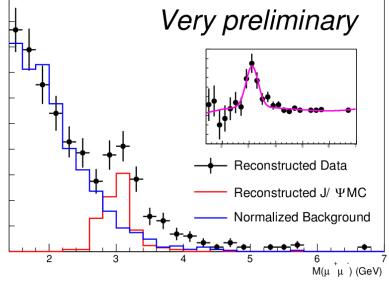

Phys. Rev. Lett. 102 (2009) 182001

Error profile for SeaQuest statistics

SeaQuest commissioning run

- February 22nd April 30th, 2012
 - 120 GeV/c proton beam, 19 ns interval (53 MHz)
 - Beam intensity: 1.0 × 10¹² proton/spill (5 s spill at 1 minute interval)
 - Target: H₂, empty flask, D₂,
 Fe, C, W
- Unstable beam bunch intensity
 - Feedback control of the beam extraction magnet (accelerator group under construction)
 - Trigger veto against high intensity bunch (prototype test)

Commissioning run

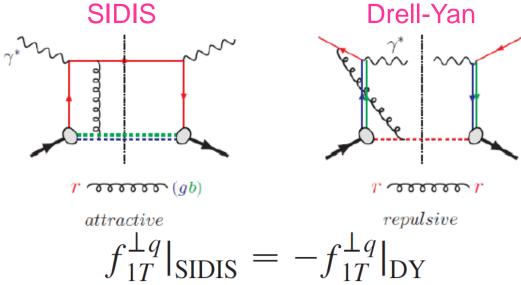

Dimuon mass distribution

 Mass resolution at J/ψ peak ~0.3 GeV/c² almost consistent with hardware specification

Improvement of the track reconstruction algorithm underway

Coming physics run

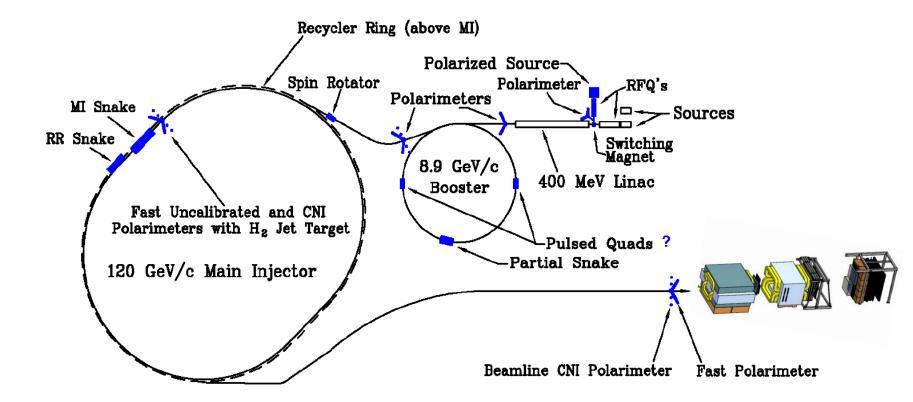
- Main injector upgraded
- Extraction beam line commissioning ongoing
- Beam to the SeaQuest experiment late October, 2013
- 2 year data accumulation (2013-2015) for 1.0 × 10¹⁹ protons on target
- Beam intensity: 1.0 × 10¹³ protons/spill (5s spill at 1 minute interval)



Polarized Drell-Yan experiment

- Toward understanding of the "Spin Puzzle" with extended picture of the nucleon structure
 - 3-dimensional description of the nucleon structure
 - Quantum many-body correlation of quarks and gluons
 - Transverse quark-gluon distribution inside the nucleon
 - TMD (Transverse-Momentum Dependence) factorization and collinear higher-twist factorization
 - Transverse-momentum distribution inside the nucleon
- Single transverse-spin asymmetry
 - Sivers function
 - Transversity
 - Boer-Mulders function
- Double transverse-spin asymmetry
 - Transversity (quark⊗antiquark for p+p collisions)
- Double helicity asymmetry
 - Flavor asymmetry of sea-quark polarization

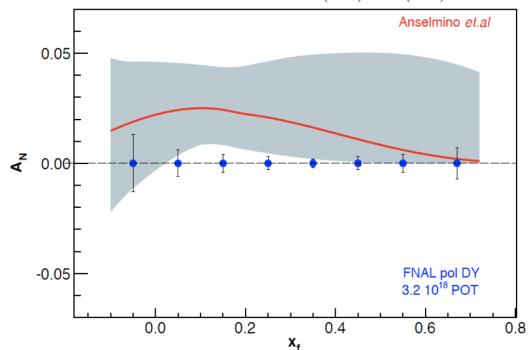
Non-universality of TMD distribution function


 Opposite-sign contribution of TMD distribution function to SSA in semi-Inclusive DIS (SIDIS) process and Drell-Yan process

- Fundamental property based on gauge invariance of QCD
- Experimental verification required
 - Understanding in wide kinematic range from fixed target experiments to collider experiments
 - Polarized Drell-Yan experiments
 - COMPASS, SeaQuest, RHIC(, GSI-FAIR, NICA, ...)
 - Polarized SIDIS experiments
 - EIC

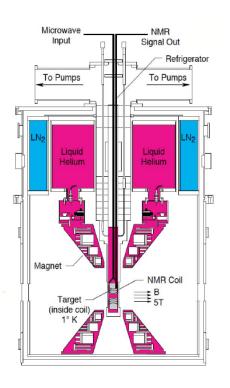
Polarized Drell-Yan experiment P1027

- Polarized beam experiment
 - May 18th, 2012 proposal submitted
 - November 14th, 2012 stage-1 approval

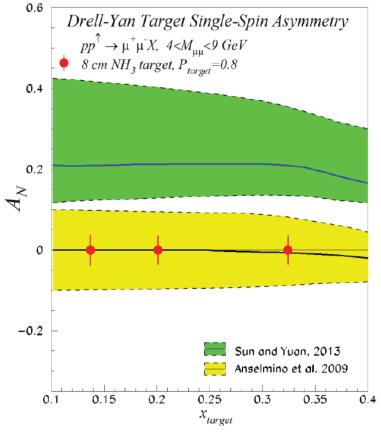


October 21, 2013 15

Polarized Drell-Yan experiment P1027


- Clean measurement of sign and shape of Sivers distributions to compare DIS and Drell-Yan
- 3.2 × 10¹⁸ POT
- Red curve: prediction from SIDIS data (HERMES &

 $\text{COMPASS)} \ \ A_N \equiv \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \propto \frac{f_{1T}^{\perp,u}(x_B) \cdot \bar{u}(x_T)}{u(x_B) \cdot \bar{u}(x_T)}$


Polarized Drell-Yan experiment P1039

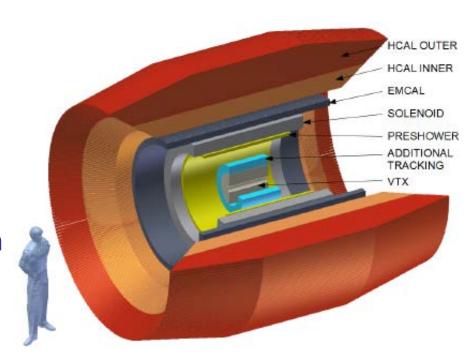
- Polarized target experiment
 - May 6th, 2013 Lol submitted
 - June 26th, 2013 stage-1 approval
- Polarized target R&D at LANL
 - LANL LDRD project FY2013-2016

$$A_N \equiv rac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \propto rac{u(x_B) \cdot f_{1T}^{\perp, ar{u}}(x_T)}{u(x_B) \cdot ar{u}(x_T)}$$

October 21, 2013 17

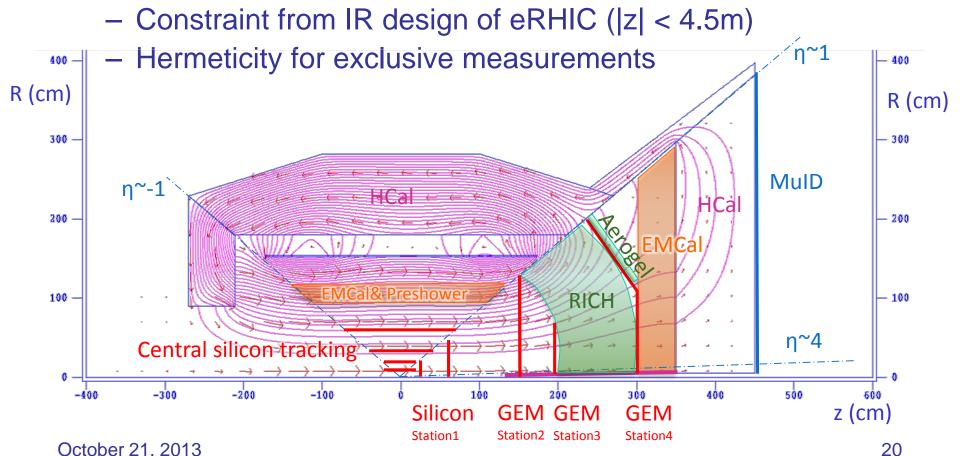
RHIC

March 18, 2013


Detector upgrade project at PHENIX

sPHENIX

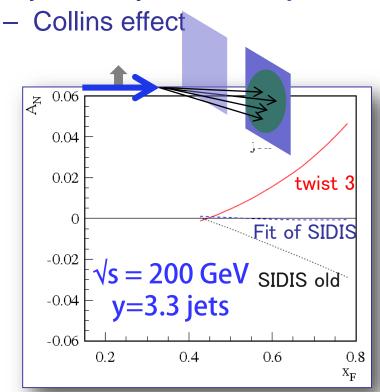
- Barrel upgrade
 - Compact jet detector
 - Extension of tracking layers and preshower detector
- Forward upgrade
- Partial installation and commissioning in 2018-2019
- Completion and experiment in 2021-2022

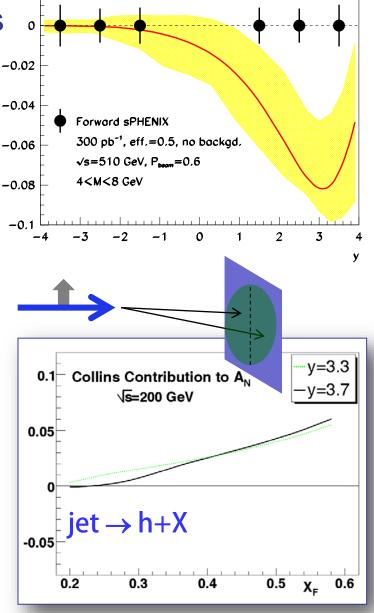

ePHENIX at eRHIC

- Transition to eRHIC in 2023-2024
- Commissioning and experiment start in 2025

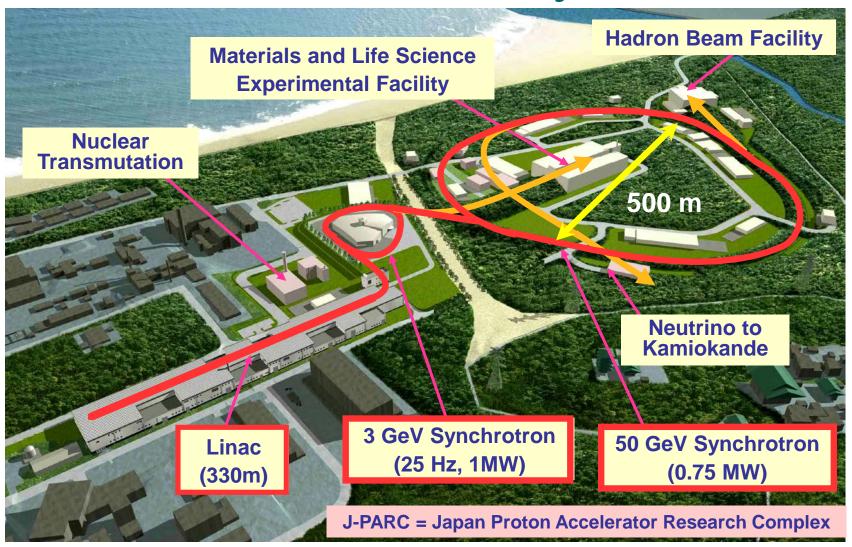
sPHENIX forward upgrade

- Open geometry
 - Wide kinematic coverage of photon, jet, leptons and identified hadrons
- Compatible design for eRHIC detector (ePHENIX)




sPHENIX forward upgrade

• Sivers effect in Drell-Yan process


Valence quark region at x~0.2 with 1_{-0.02}
 η < 4 coverage

- Jet asymmetry
 - Sivers effect or higher-twist effect
- Asymmetry inside of jets

J-PARC facility

Joint Project between KEK and JAEA

August 23, 2010

J-PARC proposal/Lol

- P04: measurement of high-mass dimuon production at the 50-GeV proton synchrotron
 - "deferred"
- P12-Lol: study of parton distribution function of mesons via Drell-Yan process at J-PARC at high-p beamline
- P24: polarized proton acceleration at J-PARC
 - "no decision"
- Possible stage-1?
 - 30 GeV unpolarized proton beam & 5-20 GeV π/K beam + polarized target

Exclusive Pion-Induced Drell-Yan Process

small
$$t = (q - q')^2$$

Bernard Pire, IWHS2011

large
$$t = (q - q')^2$$

- ϕ_{π} : pion distritribution amplitude (DA)
- DA characterizes the minimal valence Fock state of hadrons.
- •DA of pion are also explored by pion-photon transition form factor in Belle and Barbar Exps.

TDA: π -N transistion distritribution amplitude

- TDA characterizes the next-tominimal valence Fock state of hadrons.
- •TDA of pion-nucleon is related to the pion cloud of nucleons.

October 21, 2013 24

Summary

- Fermilab SeaQuest experiment
 - Unpolarized program
 - Flavor asymmetry of sea-quark distribution
 - Boer-Mulders distribution
 - Cold Nuclear Matter (CNM) effect
 - Physics run will start in late October (this month)
- Polarized Drell-Yan experiments
 - Polarized Drell-Yan proposals of Fermilab program
 - P1027 polarized beam experiment (stage-1 approval)
 - P1039 polarized target experiment (stage-1 approval)
 - PHENIX upgrade program at RHIC
 - sPHENIX barrel and forward detector upgrade under discussion
 - Possible J-PARC program
 - Exclusive Drell-Yan measurement under development

October 21, 2013 25