

ep and eA physics at LHeC DIS in the TeV range

Anna Staśto Penn State

http://www.cern.ch/lhec

CNU Newport News, October 21, 2013

Conceptual Design Report

ISSN 0954-3899

Journal of Physics G

Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group

iopscience.org/jphysg

IOP Publishing

193 Reinte Offing Design 63Kpgaluebner (CERN) 947 references Ferdinand Willeke (BNL) 5 Obapater Sking Design 14 Reiningd Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokoya (KEK) **Energy Recovery** Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) Interaction Region Functionepipulotesations: Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberg Bruening, M. Klein, Installation and Infrastructure Sylvand Meisys (Jett) A28 (2013) 16, 133001 New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangaro CERN Group Guido Altarelli (BpXa): 21.50 Vladimir Chekelian (MPI Munich) Alan Martin (Durham) **Physics at High Parton Densities** Alfred Mueller (Columbia) Raju Venugopalan en study Group Michele Arneodo arXiv 12tin 483

arXiv:1206.2913

Lepton—Proton Scattering Facilities

Energy frontier deep inelastic scattering - following HERA with the LHC LHeC: A new laboratory for particle physics, a 5th large LHC experiment

Energy Recovery Linac (3 pass)

Figure 1: Schematic view on the LHeC racetrack configuration. Each linac accelerates the beam to 10 GeV, which leads to a 60 GeV electron energy at the collision point with three passes through the opposite linear structures of 60 cavity-cryo modules each. The arc radius is about 1 km, mainly determined by the synchrotron radiation loss of the 60 GeV beam which is returned from the IP and decelerated for recovering the beam power. Comprehensive design studies of the lattice, optics, beam (beam) dynamics, dump, IR and return arc magnets, as well as auxiliary systems such as RF, cryogenics or spin rotators are contained in the CDR [1], which as for physics and detector had been reviewed by 24 referees appointed by CERN.

Ring-Ring option as fall back;

Detector design

Forward/backward asymmetry in energy deposited and thus in geometry and technology Present dimensions: LxD =14x9m² [CMS 21 x 15m², ATLAS 45 x 25 m²] Taggers at -62m (e),100m (γ,LR), -22.4m (γ,RR), +100m (n), +420m (p)

LHeC kinematics 2 0 ep/ea collisions LHeC Experiment ep HERA Experiments H1 and ZEUS $E_p=7~{ m TeV}_{ m Point 6}$ Fixed Target Experiments: NMC BCDMS 10 1 F665 $E_A = 2.75 \,\mathrm{TeV}/\mathrm{Receivect}$ SLAC 10^{-3} $E_e = 60(50) - 140 \text{ GeV}$ Point 8 10^{2} Nuclear Pro Structure & Low x High Parton $\sqrt{s} \simeq 1 - 2 \text{ TeV}$ Densitv Dynamics Matter 10 • Requirements: থ**ি** 10⁶ ∏ 10 -6 10 -5 10 -4 10 -7 * Luminosity~ 10^{33} cm⁻²s⁻¹. eA: L_{en}~ 10^{32} cm⁻²s⁻¹ e A $(\mathbf{x}, \mathbf{Q}^2)$ ~<mark>∂</mark> 10° [LHeC * Acceptance: I-179 degrees ies: Fixed-target data: NMC (low-x ep/eA). a: 10 E772 New estimate * Tracking to I mrad. 1 0³ e-Pb (LHeC) * EMCAL calibration to 0.1 %. 70 GeV - 2.5 TeV) EMC $\mathcal{L}^{ep} = 10^{34}$ * HCAL calibration to 0.5 %. $cm^2 s$ Q_s^2 (Pb, b=0 fm) * Luminosity determination to | %. perturbative * Compatible with LHC non-perturbative

10⁻¹

operation.

--3

New physics on scales ~10⁻¹⁹ m

LHeC kinematics: acceptance

Kinematics in ep mode

 $Q_{min}^2(x, \theta_e^{max}) \simeq [2E_e \cot(\theta_e^{max}/2)]^2.$

LHeC - electron kinematics

Access to low x and low Q requires electron acceptance down to 179 degrees.

$$Q_{\min}^2 = 0.03 \text{ GeV}^2$$
 for $E_e = 10 \text{ GeV}$
 $Q_{\min}^2 = 1 \text{ GeV}^2$ for $E_e = 60 \text{ GeV}$
 $Q_{\min}^2 = 6 \text{ GeV}^2$ for $E_e = 140 \text{ GeV}$

Physics motivation for ep/eA in TeV range

- Details of parton structure of the nucleon (from ep,ed/eA), full unfolding of PDFs (strange, charm, beauty). Measurement of GPDs and unintegrated PDFs.
- Mapping the gluon field down to very low x. Saturation physics.
- Heavy quarks, factorization, diffraction, electroweak processes.
- Properties of Higgs. Very good sensitivity to: H to bbar, H to WW coupling in the 125 GeV mass range.
- Very precise measurement of the coupling constant.
- Deep inelastic scattering off nuclei. Nuclear parton distributions. Pinning down the initial state for heavy ion collisions.

LHeC Project Status

2012: CDR published arXiv:1206.2913 2013: Higgs with ep: 10³⁴ Luminosity arXiv:1211.5102, 1305.2090 ERL testfacility design, 801.58MHz → 2014: January 20/21. next workshop

ISSN 0954-3899

Journal of Physics G Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group

iopscience.org/jphysg

IOP Publishing

1 GeV, 3pass, ERL Testfacility - under design at CERN

Parameter	Value
Frequency	801.58 MHz
Q ₀	2 x 10 ¹⁰
Injection energy	5 MeV
Beam current	10 mA
Bunch population	3 109
Bunch spacing	50 ns
Synchrotron radiation loss at 900 MeV	55 keV
Emittance growth at 900 MeV	0.08 μm [Δε_arc]
	0.11 μm [Δε_t]
Maximum beam energy	900 MeV
Distance between linacs	> 5 m
Length of each linac	~13 m
Number of dipole magnets	2 x 4 [45°] and 2 x 8 [22.5°] =24

Tentative parameters of the CERN Energy Recovery Testfacility (10.10.2013)

A. Valloni, R. Calaga, O. Brüning, E. Jensen, M. Klein, R. Tomas, F. Zimmermann, "Strawman Optics Design for the LHeC ERL Test Facility" IPAC13, Shanghai, May 2013, http://accelconf.web.cern.ch/AccelConf/IPAC2013/papers/tupme055.pdf

Strong international collaboration and interest: AsTEC, Beijing, BNL, BINP, Cornell, DESY, JLab, Mainz U..

Higgs production at LHeC

Higgs production at LHeC H->bb results

Case study for electron beam energy of 60 GeV using same analysis strategy

 S/N ~1 confirmed in independent analysis for M_H=125 GeV for E_e=60 GeV (master thesis by Sergio Mandelli, University of Liverpool 2013)

Higgs Physics with the LHeC

High precision partons and strong coupling to NNNLO remove QCD ("thy") uncertainties \rightarrow LHC facility may be transformed into precisionHiggs factory [σ (pp \rightarrow HX) = 50 pb]

NNLO pp-Higgs	Cross	Sections	at	14	TeV
---------------	-------	----------	----	----	-----

LHeC Higgs		$CC(e^-p)$	NC (e^-p)	$CC(e^+p)$
Polarisation		-0.8	-0.8	0
Luminosity	$[ab^{-1}]$	1	1	0.1
Cross Sectio	on [fb]	196	25	58
Decay Bi	Fraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^H e^- p$	$\mathcal{N}_{CC}^{H} e^{+}p$
$H \to b\overline{b}$	0.577	113 100	$13 \ 900$	$3 \ 350$
$H \to c\overline{c}$	0.029	5 700	700	170
$H \to \tau^+ \tau^-$	0.063	12 350	1 600	370
$H \rightarrow \mu \mu$	0.00022	50	5	_
$H \rightarrow 4l$	0.00013	30	3	_
$H \rightarrow 2l2\nu$	0.0106	2 080	250	60
$H \rightarrow gg$	0.086	16 850	2050	500
$H \rightarrow WW$	0.215	42 100	5150	1 250
$H \rightarrow ZZ$	0.0264	$5\ 200$	600	150
$H \to \gamma \gamma$	0.00228	450	60	15
$H \to Z\gamma$	0.00154	300	40	10

With L=O(10³⁴)cm⁻² s⁻¹ the LHeC becomes a high precision H facility complementary to LHC.

 $H \rightarrow bb$ to 1% cc, $\tau\tau$ under study

cf U.Klein. Talk at EPS Stockholm, July 2013

O.Brüning and M.Klein, "The Large Hadron Electron Collider" arXiv:1305.2090, MPLA A28(2013)16,1330011

cleaner FS than pp, no pile-up

- Sensitivity to H→bb is estimated by an initial simulation study : LHeC has the potential to measure H → bb coupling with an S/N of ~1 and to 1% (4%) accuracy with 60 GeV electron beam based on a luminosity of 10³⁴ (10³³) cm⁻² s⁻¹.
- At LHeC, various Higgs boson decays and Higgs CP eigenstates could be accessed via WW and ZZ fusion at c.m.s. energies of 1.3 TeV and with 1 ab⁻¹
 - complementary to LHC experiments.

Measurement of strong coupling

Unification of coupling constants?

Strong coupling is least known of all couplings Grand unification predictions suffer from uncertainty DIS tends to be lower than the world average LHeC: per mille accuracy (now percent accuracy)

A dedicated study was performed to determine the accuracy of alphas from the LHeC was performed using for the central values the SM prediction smeared within its uncertainties assuming Gauss distribution and taking into account correlations

case	cut $[Q^2 \ (\text{GeV}^2)]$	α_S	uncertainty	relative precision $(\%)$
HERA only $(14p)$	$Q^2 > 3.5$	0.11529	0.002238	1.94
HERA+jets (14p)	$Q^{2} > 3.5$	0.12203	0.000995	0.82
LHeC only (14p)	$Q^2 > 3.5$	0.11680	0.000180	0.15
LHeC only $(10p)$	$Q^{2} > 3.5$	0.11796	0.000199	0.17
LHeC only $(14p)$	$Q^2 > 20.$	0.11602	0.000292	0.25
LHeC+HERA (10p)	$Q^2 > 3.5$	0.11769	0.000132	0.11
LHeC+HERA (10p)	$Q^2 > 7.0$	0.11831	0.000238	0.20
LHeC+HERA $(10p)$	$Q^2 > 10.$	0.11839	0.000304	0.26

F₂,F_L structure functions

Reduced cross section: huge kinematic range and excellent accuracy

Longitudinal structure function: lowering electron energy

Constraining the pdfs

Mapping the Gluon Distribution

Importance for NP searches

Increase of pp luminosity moves searches to very high masses where the PDF uncertainties become very large. LHeC input will remove that. M.D'Onofrio et al. LHeC Collaboration, "New Physics with the LHeC", Poster at EPS Stockholm, July 18, 2013

Flavor decomposition

Charm

Beauty

 $Q^2 = 100000 \text{ GeV}^2$,i=11

10⁻¹

1

X

Diffraction

10 ⁻¹

10

10⁻⁶

10⁻⁵

$$x_{IP} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2}$$
$$\beta = \frac{Q^2}{Q^2 + M_X^2 - t}$$

$$x_{Bj} = x_{IP}\beta$$

momentum fraction of the Pomeron w.r.t hadron

momentum fraction of parton w.r.t Pomeron

10 -1

β

10-3

10-4

10 -2

Diffractive event selection

Rapidity gap method

Exploit correlation between x_{IP} and η_{max} Assuming forward instrumentation down to 1^o Could measure up to $\eta_{max} < 5$ Limits the range in $x_{IP} < 0.01$ Misses region of large M_X

Leading proton tagging

Using proton spectrometer at 420m Could reach higher values of x_{IP} Overlap region between leading proton tagging method and rapidity gap method can be used as a cross check

Diffractive mass distribution

New domain of diffractive masses. M_X can include W/Z/beauty

Neutral and charged current

Different shapes of $d\sigma/dy$ for W+ (q/\overline{q}) collisions

 $\frac{d\sigma}{dv}(e^-q) \propto 1 \qquad \qquad \frac{d\sigma}{dv}(e^-\bar{q}) \propto (1-y)^2$

 $\frac{d\sigma}{dxdy}(e^{-}p) \propto [(d+s) + (\overline{u} + \overline{c})(1-y)^{2}]$

 $\frac{d\sigma}{dxdy}(e^+p) \propto [(\overline{d}+\overline{s})+(u+c)(1-y)^2]$

Diffraction with charged current sensitive to the flavor decomposition of the diffractive pdfs, not constrained by the neutral current data

Event selection:

Missing transverse energy Rapidity gap selection

Kinematics calculable from the diffractive system

Suppressed in bwd region

$$y = \frac{E^{X} - p_{z}^{X}}{2E_{e}} \qquad Q^{2} = \frac{(p_{T}^{X})^{2}}{1 - y} \qquad x_{IP} = \frac{Q^{2} + 2E_{e}(E^{X} + p_{z}^{X})}{4E_{e}E_{p}} \qquad \beta = \frac{Q^{2}}{x_{IP}ys}$$

Charged current diffraction at HERA

Predictions for charged current diffraction at LHeC

HERA 920+27.5 σ^{CCdiff}(MC) = 338fb ~20 events (60pb⁻¹)

MC RAPGAP prediction

cuts: Q² > 700 GeV², 0.005 < x_{IP} < 0.012 0.2 < y < 0.9 Markéta Jansová, Bachelor work, Prague 2013

LHeC 7000+60 σ^{CCdiff}(MC)= 923fb ~80000 events (100fb⁻¹)

No corrections for detector acceptance and resolution!

Diffractive CC events could be studied in a more detailed way...

Process dependent partonic x-section, calculable within pQCD

 $d\,\hat{\sigma}^{\gamma}$

DIS Dijets HERA vs LHeC Comparison of Synthetic Data

 $Q^2 > 4 \,\mathrm{GeV}^2 \rightarrow \theta_{el} < 176.5^\circ$

Q^2 DIS dijets in diffraction

At LHeC xsection is dominated by small \mathcal{Z}_{IP} The gluon part of the diffractive $\mathbb{P}_{2}\mathbb{P}_{2}\mathbb{P}_{2}$ dominates in that region, weakly constrained from inclusive measurement.

 $x_{\gamma} = 1$

Diffractive Dijet Photoproduction

PHP Dijets HERA vs LHeC

Only statistical errors of synthetic data depicted No acceptance and detector smearing effects take into account

LHeC kinematics: acceptance

Kinematics in ePb Kinematics at LHeC (ePb)

Similar requirements in the case of eA as in ep scattering.

Complementarity of pA and eA

- New effects likely to be revealed in tensions between eA and pA, AA, ep (breakdown of factorisation)
- - Clean final states / theoretical control to (N)NLO in QCD

Nuclear parton distributions and entry

Collinear factorization in DIS:

$$F_{2,L}^{A}(x,Q^{2}) = C_{i}(\alpha_{s};x,Q^{2}/\mu^{2}) \otimes xf_{i}^{A}(x,\mu^{2})$$

Current uncertainties of the parton distribution in nuclei

Large uncertainty at small values of x especially in the gluon and sea quark sector Translate into uncertainties in the evaluation of benchmarking for variety of processes at LHC and disentangling the effects of initial state from quark - gluon plasma in AA

 Φ_z boson azimuthal emission angle Φ_{EP} event plane azimuth

1307.3237 – ALICE

1303.2084 – ATLAS

Flow in pPb resembles that of PbPb described by hydrodynamics? How important are final state effects in pPb? Are such collective effects present in eA? Rises a lot of questions about extraction of npdfs from pPb: perhaps limited to W,Z...

Generated LHeC pseudodata for e-A

• A sample of pseudodata (by N. Armesto) for reduced cross-sections

$$\sigma_r^{NC} = \frac{Q^4 x}{2\pi\alpha^2 Y_+} \frac{d^2 \sigma^{NC}}{dx dQ^2} = F_2 \left[1 - \frac{y^2}{Y_+} \frac{F_L}{F_2} \right] \qquad Y_+ = 1 + (1 - y)^2$$

was generated from using assuming:

$$E_{lepton} = 50 \text{ GeV}, E_{p} = 7000 \text{ GeV}, E_{Pb} = 2750 \text{ GeV}, E_{Ca} = 3500 \text{ GeV}$$

in the kinematical window: $x < 0.01 \& Q^2 < 1000 GeV^2$

- The e+p cross-sections from a pQCD based simulation, nuclear effects according to a dipole model (Eur. Phys. J. C26 (2002) 35-43)
- The inclusive cross-sections were combined to ratios

$$\frac{\sigma_{\text{reduced}}^{\text{Ca}}(x,Q^2)}{\sigma_{\text{reduced}}^{\text{p}}(x,Q^2)}, \quad \text{and} \quad \frac{\sigma_{\text{reduced}}^{\text{Pb}}(x,Q^2)}{\sigma_{\text{reduced}}^{\text{p}}(x,Q^2)}$$

Flavor-decomposed quantities were also considered

$$\frac{\sigma_{\text{reduced, charm}}^{\text{Ca, Pb}}(x, Q^2)}{\sigma_{\text{reduced, charm}}^{\text{p}}(x, Q^2)} \quad \text{and} \quad \frac{\sigma_{\text{reduced, bottom}}^{\text{Ca, Pb}}(x, Q^2)}{\sigma_{\text{reduced, bottom}}^{\text{p}}(x, Q^2)}$$

Before the LHeC pseudodata vs EPS09

After the LHeC pseudodata vs EPS09

* Relaxing assumptions about dbar/ubar ratio in the fit.

- *CC high precision/statistics LHeC data from ep can constrain the ratio.
- *Further constraint from measuring additionally neutron pdfs from deuteron scattering.

Tests of charge symmetry using electron<mark>s</mark> and positrons in CC interactions:

$$R^{-} = 2\frac{W_2^{-D} - W_2^{+D}}{W_2^{-p} + W_2^{+p}}$$

Sensitive to u and d distributions in the proton and neutron respectively.

Radiation and Hadronization

- LHeC can provide information on radiation and hadronization.
- Large lever arm in energy allows probing different timescales: parton radiation, pre-hadron formation, hadron.
- Different stages can happen inside or outside nuclear matter depending on the energy of the parton.
- Important for heavy ion collisions .

Radiation and Hadronization

$$R_A^k(\nu, z, Q^2) = \frac{1}{N_A^e} \frac{dN_A^k}{d\nu dz} \left/ \frac{1}{N_p^e} \frac{dN_p^k}{d\nu dz} \right| \qquad z = E_h/\nu$$

 N^e number of scattered electrons at given photon energy and Q Ratio becomes sensitive to ratio of fragmentation functions in nucleus and proton

Ratio is close to one for large energies as energy losses are becoming smaller. Suppression larger for larger z due to steepness of the fragmentation function.

Formation time effects are non-negligible only at smallest energies.

Summary

- New prospects for luminosity range at LHeC $\mathcal{L} = 10^{34} \frac{1}{\text{cm}^2 \text{ s}}$
- This has important impact onto Higgs production. $H \rightarrow b\bar{b}$ with 1% precision at luminosity of. More dedicated studies needed here.
- Precision pdfs needed for new physics.
- Prospects of charged current diffraction. Access to flavor decomposition of diffractive pdfs.
- Dijets in diffraction, due to smaller z_{IP} , sensitivity to gluon component.
- Diffractive dijets in DIS and photoproduction, factorization tests.
- d/u ratio constraints in ep and in eD.
- A proposal for ERL test facility with energy 900 MeV is under development.
- Next LHeC workshop 20/21st January 2014

backup

Design Parameters

parameter [unit]	LHeC	
species	$e p, {}^{208}\text{Pb}^{82+}$	
beam energy (/nucleon) [GeV]	60 7000, 2760	
bunch spacing [ns]	25,100 $25,100$	
bunch intensity (nucleon) $[10^{10}]$	0.1 (0.2), 0.4 17 (22), 2.5	
beam current [mA]	6.4(12.8) 860(1110), 6	
rms bunch length [mm]	0.6 75.5	
polarization [%]	90 (e^+ none) none, none	
normalized rms emittance $[\mu m]$	50 3.75 $(2.0), 1.5$	
geometric rms emittance [nm]	0.43 0.50 (0.31)	
IP beta function $\beta_{x,y}^*$ [m]	0.12 (0.032) 0.1 (0.05)	
IP spot size $[\mu m]$	7.2(3.7) $7.2(3.7)$	
synchrotron tune Q_s	$ 1.9 \times 10^{-3}$	
hadron beam-beam parameter	$0.0001 \ (0.0002)$	
lepton disruption parameter D	6 (30)	
crossing angle	0 (detector-integrated dipole)	
hourglass reduction factor H_{hg}	0.91 (0.67)	
pinch enhancement factor H_D	$1.35 (0.3 \text{ for } e^+)$	
CM energy [TeV]	1.3, 0.81	
luminosity / nucleon $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1(10), 0.2	

Designed for synchronous ep and pp operation during the HL-LHC phase.

CDR chapter on low x and nuclei:

4	Phy	rsics at	; High Parton Densities	101
	4.1	Physic	es at small x	. 101
		4.1.1	High energy and density regime of QCD	. 101
		4.1.2	Status following HERA data	. 109
		4.1.3	Low- x physics perspectives at the LHC $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 116
		4.1.4	Nuclear targets	. 119
	4.2	Prospe	ects at the LHeC	. 124
		4.2.1	Strategy: decreasing \boldsymbol{x} and increasing \boldsymbol{A}	. 124
		4.2.2	Inclusive measurements	. 124
		4.2.3	Exclusive production	. 132
		4.2.4	Inclusive diffraction	. 152
		4.2.5	Jet and multi-jet observables, parton dynamics and fragmentation .	. 166
		4.2.6	Implications for ultra-high energy neutrino interactions and detection	178

Low x and saturation

HERA established strong growth of the gluon density towards small x
Parton saturation: recombination of gluons at sufficiently high densities leading to nonlinear modification of the evolution equations.
Emergence of a dynamical scale: saturation scale dependent on energy.

LHe Strategy for making target more 'black'

F₂,F_L structure functions

Reduced cross section: huge kinematic range and excellent accuracy

Longitudinal structure function: lowering electron energy

F₂,F_L structure functions at low x

Precision measurements of structure functions at very low x: test DGLAP, small x, saturation inspired approaches.

Interestingly, rather small band of uncertainties for models based on saturation as compared with the calculations based on the linear evolution. Possible cause: the nonlinear evolution washes out any uncertainties due to the initial conditions, or too constrained parametrization used within the similar framework.

approx. 2% error on the F2 pseudodata, and 8% on the FL pseudodata ,should be able to distinguish between some of the scenarios.

He Testing nonlinear dynamics in ep

Simulated LHeC data using the nonlinear evolution which leads to the parton saturation at low x.

DGLAP fits (using the NNPDF) cannot accommodate the nonlinear effects if F2 and FL are simultaneously fitted.

Additional constraints (apart from F2) are FL and F2 charm, which can help pin down the gluon distribution at small x.

DIS on deuterons

• Deuteron can serve as an effective neutron beam through the spectator proton tagging. The resulting neutron structure function data are essentially free from nuclear corrections.

 \bullet Can perform quark flavor decomposition. Important at large x

 $F_2(n) \sim (u+4d)$

 $F_2(p) \sim (4u+d)$

• Testing important relation $f_j^D(\frac{x}{x_{IP}}, Q^2, x_{IP}, t)$ ion in ep and shadowing in eD (Gribov)

Nuclear physics in eA complementarity to pA, AA at LHC

<u>Gluons from saturated nuclei</u> \rightarrow Glasma? \rightarrow QGP \rightarrow Reconfinement

Precision measurement of the initial state.

Nuclear structure functions.

Particle production in the early stages.

Factorization eA/pA/AA.

Modification of the QCD radiation and hadronization in the nuclear medium.

Nuclear structure

Deep Inelastic Scattering:

$$\frac{d^2 \sigma^{e_p \to e_X}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right]$$

Nuclear ratio for structure function

$$R_{F_2}^A(x,Q^2) = \frac{F_2^A(x,Q^2)}{A F_2^{\text{nucleon}}(x,Q^2)}$$

Nuclear effects

$$R^A \neq 1$$

- Fermi motion $x \ge 0.8$
- EMC region $0.25 0.3 \leq x \leq 0.8$
- Antishadowing region $0.1 \le x \le 0.25 0.3$
- Shadowing region $x \leq 0.1$

What the nuclear DIS data tell us?

Kinematic coverage in nuclear DIS and DY

Shadowing increases with decreasing x

Shadowing decreases with increasing Q

Х

LHO Nuclear structure functions at LHeC

Nuclear ratio for structure function or a parton density:

$$R_f^A(x,Q^2) = \frac{f^A(x,Q^2)}{A \times f^N(x,Q^2)}$$

LHeC potential: precisely measure partonic structure of the nuclei at small x.

UHe Nuclear parton distributions at LHeC

Global NLO fit with the LHeC pseudodata included. DGLAP NLO, VFNS SACOT prescription, CTEQ6.6 for free proton pdf.

LHO Nuclear parton distributions at LHeC

Global NLO fit with the LHeC pseudodata included. DGLAP NLO, VFNS SACOT prescription, CTEQ6.6 for free proton pdf.

Including information on charm and beauty contributions in eA DIS

Much smaller uncertainties.

- ^{1.2} Very large constraint on the low x
- 1.0 gluons and sea quarks with the
- 0.8 LHeC pseudodata .

).6).4

1.4

1.2

0.6

0.4

0.2

0.0

D.2 Also constraints at large x through sum rules and DGLAP evolution.

1.0 Measurements on F2 in eA up to $_{0.8}$ x=0.6 for large $Q^2 = 1000 \text{ GeV}^2$

Diffractive mass distribution

New domain of diffractive masses. M_X can include W/Z/beauty

More in Pierre's talk

Inclusive diffraction in eA

incoherent

Nuclear parton distributions: uncertainty

Premilinary analysis **CTEQ nPDFs** $Q^2 = 100 \text{ GeV}^2$

Dihadron correlation

 $p_T^l > 3 \text{ GeV}$ $p_T^a > 2 \text{ GeV}$ $z_l = z_a = 0.3$ y = 0.7 $Q^2 = 4 \text{ GeV}^2$

- Correlation suppressed for a denser target (nucleus).
- Variation of the correlation with x indicates importance of ln(1/x) effects.
- In particular this observable provides a measure to small x Weizsacker-Williams unintegrated gluon distribution in the hadron/nucleus.

Dipole model at high energy: photon fluctuates into gabar pair and undergoes written in the following annipate faction, with the starget ically in Fig. 3.1,

$$\sigma_{T,L}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 dz \sum_f |\Psi_{T,L}^f(\mathbf{r},z,Q^2)|^2 \hat{\sigma}(x,\mathbf{r}).$$
(3.7)

Chapter 3. Inclusive DIS at small x

where the photon wave functions $\Psi_{T,L}^{f}$ describe the splitting of the virtual pho-

2/Q

$$\times \int_{1}^{d^{2}\mathbf{l}} \alpha_{s}f(x,l^{2}) (1-e^{-i\mathbf{l}\cdot\mathbf{r}}) (1-e^{i\mathbf{l}\cdot\mathbf{r}}), \qquad (3.6)$$
where $K_{0,1}$ are the Bessel-Mc Donal function by constructions on bis a collective phenomenon.
The following compact form $[co, 3b]$, such a catal Ca

tions \mathbb{T}^{f} describe the collitions of the virtual of boro the photon wave fu

Exclusive diffraction

- Exclusive diffractive production of VM is an excellent process for extracting the dipole amplitude and GPDs
- Suitable process for estimating the 'blackness' (the interaction.
- t-dependence provides an information about the impact parameter profile of the amplitude.

Central black region growing with decrease of x.

Large momentum transfer t probes small impact parameter where the density of interaction region is most dense.

Exclusive processes: DVCS

MILOU generator using Frankfurt, Freund, Strikman model.

low x

large scales

LHO Exclusive diffraction: t-dependence

Exclusive diffraction on nuclei

Possibility of using the same principle to learn about the gluon distribution in the nucleus. Possible nuclear resonances at small t?

W (GeV)

Monica d'Onofrio talk at Chavannes-de-Bogis

Importance of PDF

- If we see deviations from SM, will be important to characterize the physics underneath
- The case of strong production:

Organisation for CDR

Scientific Advisory Committee

Guido Altarelli (Roma) Sergio Bertolucci (CERN) Stan Brodsky (SLAC) Allen Caldwell (MPI Muenchen) - Chair Swapan Chattopadhyay (Cockcroft Institute) John Dainton (Liverpool) John Ellis (CERN) Jos Engelen (NWO) Joel Feltesse (Saclay) Roland Garoby (CERN) Rolf Heuer (CERN) Roland Horisberger (PSI) Young-Kee Kim (Fermilab) Aharon Levy (Tel Aviv) Lev Lipatov (St. Petersburg) Karlheinz Meier (Heidelberg) Richard Milner (MIT) Joachim Mnich (DESY) Steve Myers (CERN) Guenther Rosner (Glasgow) Alexander N. Skrinsky (INP Novosibirsk) Stefano Forte (Milano) Anthony Thomas (JLab) Steve Vigdor (Brookhaven) Ferdinand Willeke (Brookhaven) Frank Wilczek (MIT)

Steering Committee

Oliver Bruening(CERN) John Dainton (Liverpool) Albert De Roeck (CERN) Max Klein (Liverpool) - Chair Paul Laycock (Liverpool) Paul Newman (Birmingham) Emmanuelle Perez (CERN) Wesley Smith (Wisconsin) Bernd Surrow (MIT) Katsuo Tokushuku (KEK) Urs Wiedemann (CERN) Frank Zimmermann (CERN)

Working Group Convenors

Accelerator Design

Oliver Bruening (CERN) John Dainton (Liverpool)

Interaction Region

Bernhard Holzer(CERN) Uwe Schneekloth (DESY) Pierre van Mechelen (Antwerpen)

Detector Design

Peter Kostka (DESY) Alessandro Polini (Bologna) Rainer Wallny (Zurich)

New Physics at Large Scales

Georges Azuelos (Montreal) Emmanuelle Perez (CERN) Georg Weiglein (Hamburg)

Precision QCD and Electroweak

Olaf Behnke (DESY) Paolo Gambino (Torino) Thomas Gehrmann (Zurich) Claire Gwenlan (Oxford)

Physics at High Parton Densities Alan Martin (Durham)

Néstor Armesto (Santiago de Compostela) Brian A. Cole (Columbia) Paul R. Newman (Birmingham) Anna M. Stasto (PennState)

CERN Referees

Ring Ring Design Kurt Huebner (CERN) Alexander N. Skrinsky (INP Novosibirsk) Ferdinand Willeke (BNL) Linac Ring Design Reinhard Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokoya (KEK) **Energy Recovery** Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) Interaction Region Daniel Pitzl (DESY) Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberger (PSI) Installation and Infrastructure Sylvain Weisz (CERN) New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) Precision QCD and Electroweak Guido Altarelli (Roma) Vladimir Chekelian (MPI Munich) Physics at High Parton Densities Alfred Mueller (Columbia) Raju Venugopalan (BNL) Michele Arneodo (INFN Torino)

LHeC kinematics: acceptance

Kinematics in ep Kinematics of maximum asymmetry

kinematics. Large x becomes almost inaccessible.

LHeC kinematics: acceptance

acceptance of hadrons down to 1 degree.

 $Q^2 (x, \theta_{h,min}) \simeq [2E_p x \tan^2(\theta_{h,min}/2)]^2,$

Photoproduction cross section

Explore dual nature of the photon: pointlike interactions or hadronic behavior.

Tests of universality of hadronic cross sections, unitarity, transition between perturbative and nonperturbative regimes.

Dedicated detectors for small angle scattered electrons at 62m from the interaction point.

Kinematics of events:

$$Q^2 \sim 0.01$$

 $y \sim 0.3$

Systematics is the limiting factor here. Assumed 7% for the simulated data as in H1 and ZEUS.