RHIC p+p Future Plans Justin Stevens QCD Frontier 2013

14

RHIC

STAR 🖈

PH^{*} ENIX

EBIS .

BOOSTER

NSRL .

AGS

LINAC

RHIC Machine Overview

- Versatile accelerator
 complex with many ions
 used to date: p, d, Cu, Au, U
- * Wide range of \sqrt{s} energies studied already
 - * Au+Au: 7.7 200 GeV
 - * p+p: 62.4 510 GeV

STAR and PHENIX Detectors

- Complementary strengths in the current detector systems
- * Future upgrades at forward rapidity required for some measurements

Helicity Structure of the Proton

Proton Spin Puzzle

DSSV 2008 Global Analysis

$$\langle S_p \rangle = \frac{1}{2} = \frac{1}{2}\Delta \Sigma + \Delta G + L$$

$$\Delta \Sigma = \int \left(\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s} \right) dx$$

Integral of quark polarization is well measured in DIS to be ~30%; current decomposition from SIDIS but sea not well constrained

$$\Delta G = \int \Delta g\left(x\right) dx$$

Directly probed in polarized proton collisions at RHIC

(x)

Helicity PDF

 $\Delta f(x) =$

(x)

Gluon polarization

- For most of the RHIC kinematics,
 qg and gg dominate, making A_{LL}
 for inclusive probes (jets, π⁰s, etc)
 sensitive to gluon polarization
- * 2009 data from RHIC lie above the DSSV 2008 curve, but what does it mean for Δg?

Gluon polarization

DSSV++ is a new, preliminary global analysis from the DSSV group which includes 2009 preliminary PHENIX and STAR A_{LL} data

$$\int_{0.05}^{0.2} \Delta g(x, Q^2 = 10 \,\text{GeV}^2) dx = 0.10_{-0.07}^{+0.06}$$

First experimental evidence of non-zero gluon polarization in the RHIC range (0.05 < x < 0.2)</p>

Gluon polarization: low-xg

- * Higher \sqrt{s} and forward rapidities probe the low-x_g region
- * Correlated probes are sensitive to the x dependence of Δg
- * 2011-2013 collected large dataset at \sqrt{s} = 500 GeV

$$x_1, x_2 = \frac{M}{\sqrt{s}} \exp\left(\pm\frac{\eta_3 + \eta_4}{2}\right)$$

Sea Quark Flavor Asymmetry

- * Flavor asymmetry d/u observed in unpolarized Drell-Yan
- Polarized flavor asymmetry not well constrained

W production

- Ws couple directly to the quarks and antiquarks of interest
- V-A coupling of the weak interaction leads to perfect spin separation

Measure single-spin asymmetry:

(Helicity flip in one beam while averaging over the other)

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

$$A_L^{W-} \propto \frac{-\Delta d(x_1)\bar{u}(x_2) + \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)}$$

$$A_L^{W+} \propto \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

Recent Results for W $A_L(\eta)$

* First measurement of the rapidity dependence of W A_L from 2012 data

* Complementary results from PHENIX and STAR at different rapidities

QCD Frontier 2013: 10.21.13

Sea Quark Polarization

- * DSSV++ is a new, preliminary global analysis from the DSSV group which includes 2012 STAR W A_{L}
- Higher precision data already collected in 2013 will further improve the constraints on the sea quark polarization

Justin Stevens, 11

Sea Quark Polarization

- * DSSV++ is a new, preliminary global analysis from the DSSV group which includes 2012 STAR W $A_{\rm L}$
- Higher precision data already collected in 2013 will further improve the constraints on the sea quark polarization

Sea Quark Polarization

 DSSV++ is a new, preliminary global analysis from the DSSV group which includes 2012 STAR W AL

Higher precision data already collected in 2013 will further improve the constraints on the sea quark polarization

Transverse Spin Structure of the Proton

Transverse Spin Asymmetries: A_N

- * Large A_N for inclusive hadrons observed at forward rapidity from fixed target energies up to $\sqrt{s} = 500$ GeV at RHIC, with no indication of $1/p_T$ falloff as initially predicted
- * To understand these large asymmetries, one typically looks beyond the collinear, leading twist framework (ie. TMDs and twist-3):
 - ★ New observables needed to disentangle effects from initial state spink_T correlations, spin-dependent fragmentation in the final state, or ...?

Understanding A_N

Sivers: asymmetry in the forward jet or photon production

- Jets, direct photons, Drell-Yan all proposed to access Sivers effect directly (no fragmentation)
- Collins mechanism can be probed with hadron azimuthal distributions within a jet
- Access to transversity through Collins and Interference Fragmentation Functions

Collins: transversity with asymmetry in the jet fragmentation

Transversity: chiral odd, can be compared to tensor charge from lattice QCD

Sivers

- Inclusive jet production only sensitive to Sivers
 - Mid-rapidity jet and π⁰ consistent with zero, and constrains gluon Sivers function
 - * Recent A_NDY result at forward rapidity: small, but nonzero asymmetry (naively expected due to $A_N(\pi^+) \approx -A_N(\pi^-)$)

- Forward prompt photon production
 - Direct photons sensitive exclusively to Sivers, but fragmentation photons contain some dilution from Collins
 - Sivers extracted from pp and SIDIS give significantly different predictions for A_N due to process dependence of Sivers function
 - Pre-shower upgrades to forward EM calorimeters (2015) in progress for PHENIX and planned for STAR should differentiate these predictions

Sivers

- Drell-Yan type reactions (χ*, W[±], Z) provide cleanest approach to verify the sign change (luminosity hungry)
- Caveat: no TMD evolution! (talk later today)

SIDIS = -DY

Phys.Rev. D81 (2010) 054020

Current STAR W AN Projections

Current PHENIX DY AN Projection

sPHENIX Upgrade DY A_N Projection

QCD Frontier 2013: 10.21.13

Collins: Transversity

- Access through hadron azimuthal asymmetries in jets by reconstructing the jet (quark) thrust axis
- Studied at mid-rapidity by STAR, with hints of an asymmetry observed at 200 GeV (expect much improved precision with data from 2012+2015)
- Forward rapidity measurement needed:
 - Possible jet surrogate from PHENIX MPC-EX upgrade clustering charged track hits
 - Comprehensive forward detector upgrade needed for full jet reconstruction, charge discrimination and hadron PID

Interference FF: Transversity

* Spin dependence of di-hadron azimuthal distribution sensitive to transversity

 $d\sigma_{UT} \propto \Delta_T q(x) \cdot H_1^{<}(z, M)$

- * Results at mid-rapidity from STAR show significant asymmetries (first significant measurement that isolates contributions from transversity in $\vec{p} + \vec{p}$)
- * Upgrade to STAR TPC rapidity coverage extends reach up to $x_B \sim 0.4$
- Forward rapidity upgrades would provide access to even higher x_B

0

0.008

0.008

0.004

0.002

3.1 < η < 3.9, π⁰

-1.5

-1

Log (x)

0.5 < p_ < 1.0

2.0 < p_ < 2.5

2.5 < p_ < 3.0

3.0 < p_ < 3.5

3.5 < p_ < 4.0

-2.5

.0 < p_ < 1.5

0.2

0.6

0.4

0.8

Х

0.4

0.3

0.2

0.1

0

-0.1

Log (x)

Polarized p+A

* The ratio of forward inclusive hadron A_N at low p_T is expected to be sensitive to the saturation scale Q_s

PRD 84, 034019 (2011)

 First p+Au run planned for 2015 with STAR and PHENIX forward EM calorimeter upgrades

* A unique capability of RHIC!

GPDs at STAR

From \vec{p} +Au to $\gamma^* + \vec{p}$

- Measure A_N for exclusive ultra-peripheral (large impact parameter) di-lepton production
- Select very small t₁, to get quasi-real photon from Au beam
- Provides access to GPD E_g (TCS)
- * First \vec{p} +A run expect a few hundred J/ ψ (decay leptons at mid-rapidity)
- * Ensure exclusivity with Roman Pots upgrade

Detector Upgrade Strategy

- * Current plan is for $\vec{p} + \vec{p}$ and $\vec{p} + A$ running in 2015-16, followed by accelerator down time and Beam Energy Scan runs for ~4 years
- * Recent charge from BNL-ALD Bernd Mueller to provide LOI from the collaborations on polarized $\vec{p} + \vec{p}$ and $\vec{p} + A$ running in ~2021-2022
- * Physics case being developed together for the $\vec{p} + \vec{p}$ and $\vec{p} + A$ programs and the detector upgrades they require
- * Upgrades serve pp/pA/AA as well as eA/ep program for an eRHIC

Observable	Tracking	Hadron PID	HCAL	ECAL	Preshower
Drell-Yan	Х		В	Х	Х
Direct y	В		В	Х	В
Jets (Sivers and ΔG)			Х	Х	
Jet+Hadron (Collins)	Х	Х	Х	Х	
IFF (Transversity)	Х	Х		Х	
Lambda D _{LL} (Δs)	Х	Х	Х	Х	Х

sPHENIX Upgrade Concept

- Central rapidity upgrade (arXiv:1207:6378) focused on jet physics in A+A collisions, MIE submitted to DOE (April 2013)
- * Forward detector concept covers a larger range in rapidity $(1 < \eta < 4)$
- * Considering magnetic field shaper for very forward tracking

- * Build off of current mid-rapidity capabilities with upgrades focused on the forward rapidity region
- R&D for forward W powder calorimeter and forward tracking concepts already underway

Summary

- * RHIC is a versatile machine with unique capabilities in $\vec{p} + \vec{p}$ and $\vec{p} + A$
- Recent longitudinal results are having a significant impact on our understanding of the gluon and sea quark helicity distributions, with more data to be analyzed
- * Current plans for transverse $\vec{p} + \vec{p}$ running in the next few years will provide new insight into the large A_N observed at RHIC through direct photon, Collins asymmetries, and other measurements
- The first polarized p+A collisions will provide new access to saturation physics and GPDs at RHIC
- * Longer term upgrades are planned to capitalize on the unique capabilities of RHIC and transition to an EIC

Backup

Polarized PDFs

DSSV08 Global Analysis

LSS10 Global Analysis

Strange Quark Polarization

- Λ-Hyperon spin transfer D_{LL} is sensitive to strange sea quark polarization
- Current measurements limited to mid-rapidity,
 without hadronic calorimetry to directly trigger on Λs
- With hadronic calorimetry/tracking could extend to forward rapidity with a dedicated trigger

sPHENIX Mid-rapidity

Use jets as a tool to investigate the constituents and dynamics of the sQGP in the region of strongest coupling through its transport coefficients

arXiv:1207.6378