

Tensor Polarized Deuteron

QCD Frontier 2013 Meeting October 21-22, 2013

Narbe Kalantarians Hampton University

Outline

- Background/Motivation
- Spin-1/Tensor-Polarization Concept
- Previous and planned measurements
- Possible (Spin-1) Physics with an EIC

Why Deuteron?

- Spin-1 system
- Simple lab for nuclear physics
- Reasonably "easy" to polarize.

Spatial distribution depends on the spin state

Spin-1

Spin-1 system in a B-field leads to 3 sublevels via Zeeman interaction.

Vector polarization: $(n + - n^{-})$; $-1 < P_z < +1$ Tensor polarization: $(n + - n^{0}) - (n^{0} - n^{-})$; $-2 < P_{zz} < +1$ Normalization: $(n^{+} + n^{-} + n^{0}) = 1$

Some research has been done with deuteron beams (Thesis: V. Morozov)

Inclusive Scattering with Spin-1

Spin-1 => 4 more structure-functions: b_1, b_2, b_3, b_4

5

Spin-1 Structure Functions

Leading Twist: F_1, g_1, b_1

 F_1 : quark distributions averaged over spin states g_1 : difference of distributions of quarks aligned/anti-aligned with nucleon b_1 : difference of helicity-0/helicity non-zero states of the *deuteron*

Spin-1 Structure Functions

Leading Twist: *F*₁,*g*₁,*b*₁

 b_2 : related to b_1 by relation similar to Callan-Gross.

 b_4 : kinematically suppressed at longitudinal polarization. Also, leading twist.

 b_3 : higher twist, similar to g_2 .

b_1^d

- Deuteron essentially combination of nuclear and quark physics.
- Measured via DIS, but dependent on deuteron spin-state.
- Allows for investigation of nuclear effects at parton level.

b_1^d

Hoodbhoy, Jaffe, Manohar (1989)

 b_1 vanishes in the absence of nuclear effects.

HERMES Measurement: kinematics

- 27.6 GeV longitudinally polarized positron beam
- Internal tensor polarized d_2 gas target; $P_{zz} \sim 0.8$ (negligible P_z), dilution ~ 0.9 .
- 1 month of data taking.

HERMES Measurement:A_{zz}^d

Tensor spin asymmetry

$$A_{zz} = \frac{1}{P_{zz}} \frac{2\sigma^1 - 2\sigma^0}{3\sigma^U}$$

HERMES result was about 2σ from 0.

HERMES Measurement:b₁^d

$$b_1 = -\frac{3}{2}F_1A_{zz}$$

Rising of b_1 as x->0 can be related to same mechanism responsible for nuclear shadowing.

Ashman, et al. PLB 206 364(1988)

Can also be described in models involving double-scattering of leptons (first from proton, then neutron).

HERMES Measurement:b₂^d

 b_2 related to b_1 via Callan-Gross-type relation.

$$b_2 = 2xb_1 \left(\frac{1+R}{1+\gamma^2}\right)$$

$$R = (1 + \gamma^2) \frac{F_2}{2xF_1} - 1$$

HERMES Close-Kumano Sum Rule

F.E.Close, S.Kumano, PRD42 2377(1990)

If sea quark and antiquark tensor polarization vanishes i.e.

$$\int b_1(x)dx = 0$$

HERMES measurement:

 $\int_{0.02}^{0.85} b_1(x) dx = 0.0105 \pm 0.0034 \pm 0.0035$

 2σ result, over measured range

 $\int_{0.02}^{0.85} b_1(x) dx = 0.0035 \pm 0.0010 \pm 0.0018$

1.7 σ result, with Q²>1GeV²

PRL 95 242001(2005)

Proposal To Determine b_1^d at JLab

- Measurement at Jlab 12GeV could be complementary to HERMES.
- Advantage would be higher luminosity: ~10³⁵cm⁻²s⁻¹ compared to ~10³¹cm⁻²s⁻¹.
- Some research has been done tensor polarizing solid deuteron (ND₃) target via NMR*: P_{zz}~0.2, dilution~0.24,0.36.
- Submitted at PAC 40; Conditionally approved.

Experimental Method

$$A_{zz} = \frac{2}{fP_{zz}} \frac{\sigma_{\dagger} - \sigma_{0}}{\sigma_{0}}$$
$$= \frac{2}{fP_{zz}} \left(\frac{N_{\dagger}}{N_{0}} - 1\right)$$

Observable is the Normalized XS Difference

B-Field, density, temp, etc. held same in both states

$$b_1=-rac{3}{2}F_1^dA_{zz}$$

 σ_{\dagger} : Tensor Polarized cross-section σ_{0} : Unpolarized cross-section

 P_{zz} : Tensor Polarization

dilution factor

Projected Results: *P*_{zz} near 30%

RF saturation has demonstrated P_{zz} enhancement to ~30%

*Crabb et al. $P_{zz} = 2 - (4 - 3P_z^2)^{1/2}$

false asymmetries suppressed by 1/P_{zz}

$$\delta A_{zz} = \pm \frac{2}{f P_{zz} \sqrt{N_{cycles}}} \delta \xi$$
 17

Tens. Pol. Scattering at low x

Possibilities

- Small *x* aspect of tensor pol. (deuteron) could access antishadowing and 2 nucleon scattering.
- Could also provide complementary information for OAM.
- A good starting point would be to extract b_1^{d} with an EIC.

Issues to Address:

- How well can polarization, beam stability be understood and controlled?
- Need to do simulation studies.

b₁^d Predictions

- Both models predict b_1 (rapidly) increasing as $x \ge 0$.
- Errors for (HERMES) data shown are statistical only.

```
L. Frankfurt, V. Guzey, M. Strikman
Mod. Phys.Lett. A21(2006) 23-40
```

Predictions for b_2^d , A_{zz}^d

Phys.Lett. **B398** 245(1997)

-0,010

10

 10^{-4}

10⁻³

- Disentangling possible at lower x.
- (HERMES)Results shown are for Q²=10 GeV², errors are statistical.

Χ

10⁻² **10**⁻¹

OAM Sum Rule

- OAM obtained from A_{UT} • (vector pol.)
- Small, hatched area, for ratio, experimental (1109.6197[hep-ph])
- b_1^{d} adds complementary • information.
- Further development in ٠ progress.

$$b_1^d \equiv H_5(x,0,0)$$

S. K. Taneja, K. Kathuria, S. Liuti, G. R. Goldstein Phys.Rev. D. 86 036008 21

Deuteron Beam Polarization Studies

- Studied deuteron spin manipulation with a 270 MeV vertically polarized beam stored in IUCF storage ring. Similar study done at COSY.
- Beam Fast RF cycled through 4 vertical polarization states (to reduce systematic errors).
- Spin-1 linear combination: Flip by bunches or extract at experiment.
- Simulation in progress for MEIC (figure-8) concept.

Summary

- Tensor Polarized deuteron provides Spin-1 quark/nuclear system.
- Spin-1 produces 4 new SSFs.
- HERMES measurement, complementary proposal at Jlab.
- Access to lower x, with tensor polarized deuteron, could open new physics capabilities.
- Study underway for polarized deuteron beam for MEIC.
- Physics needs some considerable development.

*Many thanks to C. Weiss, V. Morozov, S. Liuti

Support Slides

Spin-1 Structure Functions

	Nucleon	Deuteron
b_1		$\frac{1}{2}\sum_{q}e_{q}^{2}\left[2q_{\uparrow}^{0}-(q_{\uparrow}^{1}+q_{\downarrow}^{-1})\right]$

From reflection-symmetry

$$q^m_{\uparrow} = q^{-m}_{\downarrow}$$

 b_1 d.n.e for spin-1/2 and vanishes in absence of nuclear effects. In relative S-state b_1 describes difference between helicity-0 and averaged nonzero.

$$\begin{aligned} q^0 &= (q^0_{\uparrow} + q^0_{\downarrow}) = 2q^0_{\uparrow} \\ q^1 &= (q^1_{\uparrow} + q^1_{\downarrow}) = (q^1_{\uparrow} + q^{-1}_{\uparrow}) \end{aligned}$$

 b_1 depends only spin-averaged distributions

$$\frac{1}{2}\sum_{q}e_{q}^{2}\left[q^{0}-q^{1}\right]$$
Hoodbhoy,Jaffe, Manohar (1989)

Tens. Pol. Scattering at low x

L. Frankfurt, V. Guzey, M. Strikman Mod. Phys.Lett. **A21**(2006) 23-40

Solid curve:	$Q^2 2 GeV^2$
Dashed:	5 GeV ²
Dotted:	10 GeV ²

$$T_{20} = 2\left(\frac{\sigma^{+} - \sigma^{0}}{\sigma^{+} + \sigma^{0}}\right)$$

$$b_1^d(x,Q^2) = -\frac{F_2^d(x,Q^2)}{2x}T_{20}(x,Q^2)$$

b_1 Collaboration

K. Allada, A. Camsonne, *J.-P. Chen*, A. Deur, D. Gaskell, M. Jones, C. Keith, C. Keppel, D. Mack, J. Piece, *P. Solvignon*, S. Wood, J. Zhang

Jefferson Lab

T. Badman, J. Calarco, J. Dawson, S. Phillips, *E. Long, K. Slifer*, R. Zielinski **University of New Hampshire**

> R. Gilman Rutgers

J. Dunne, D. Dutta Mississippi State University

E. Christy, P. Gueye, *N. Kalantarians*, M. Kohl, P. Monaghan, Hampton University

H. P. Cheng, H. J. Lu, X. H. Yan Huangshan University

> B. T. Hu, Y. Zhang Lanzhou University

> > Caroline Riedl

O. Rondon Aramayo, D. Crabb, D. B. Day, C. Hanretty, D. Keller, R. Lindgren, S. Liuti, B. Norum, Zhihong Ye, X. Zheng University of Virginia

> W. Bertozzi, S. Gilad, J. Huang, V. Sulkosky **MIT**

G. Ron, A. Kelleher Hebrew University of Jerusalem

> K. Adhikari Old Dominion University

Seonho Choi, Hoyoung Kang, Hyekoo Kang, Yoomin Oh **Seoul National University**

Y. X. Ye, P. J. Zhu University of Science and Technology of China

Abdellah Ahmidouch North Carolina A&T State University

Kinematics

Detector	x	Q^2	W	$E_{e'}$	$\theta_{e'}$	θ_q	Rates	Time
		(GeV^2)	(GeV)	(GeV)	(deg.)	(deg.)	(kHz)	(Days)
SHMS	0.15	1.21	2.78	6.70	7.35	11.13	1.66	6
SHMS	0.30	2.00	2.36	7.45	8.96	17.66	0.79	9
SHMS	0.45	2.58	2.00	7.96	9.85	23.31	0.38	15
HMS	0.55	3.81	2.00	7.31	12.50	22.26	0.11	30

Technically Challenging Experiment

I) Systematics

TAC : Important to control measured false asymmetries to better than 6×10^{-4} .

TAC : "We believe this is possible with a combination of upgrades to Hall C infrastructure and sufficient commitment by the collaboration to control the unusual systematic issues of this experiment."

II) Development of Large Tensor Polarizations

- 1) Incremental : Higher B field (7.55T, 212 GHz), better fridge, pumps, tempering, FM'ing.
- 2) RF Saturation : Has been demonstrated to produce large P_{zz} (30%). For full saturation P_{zz} ≈ P_z, so range of expectation is about 20–50%.
- 3) Additional Microwave Source: No theoretical limit to P_{zz} , but expensive and unproven.
- 4) Adiabatic Fast Passage :

Systematics

Impact on the observable

$$\delta A_{zz} = \pm \frac{2}{f P_{zz} \sqrt{N_{cycles}}} \delta \xi$$

Dedicated team to systematics/false asyms

similar manpower requirement to g2p exp. where we had several teams completely separate from the polarized target effort.

Systematics

False Asymmetries from Time Dependent Drifts

				False Asymmetries
Spec. $\langle x \rangle$	Hours	Stat. Err $(\times 10^{-3})$	Cycles	δΑ (×10 ⁻³)
0.15	144	2.6	12	4.3
0.30	216	3.0	9	4.9
0.45	360	3.7	15	3.8
0.55	720	4.1	36	2.4

Normalization Factors

Source	Relative Uncertainty
Polarimetry	8.0%
Dilution/Packing Fraction	4.0%
Radiative Corrections	1.5%
Charge Determination	1.0%
Detector Resolution and Efficiency	1.0%
Total	9.2%

Tensor Target opens new possibilities

Few Examples

Tensor Structure function b_2 , b_3 , b_4

```
Azimuthal Asymmetries b<sub>4</sub>
```

```
Elastic e-D scattering
T<sub>20</sub>
T<sub>11</sub>
```

D(e,e'p) Cross Section on Tensor Polarized Deuterium. H. Anklin, W. Boeglin et al., PR97-102, PAC13 rated A-

X>1 Scattering, connection to SRCs : M. Sargsian et al.

D-Wave Components of Deuteron Wave function : S. Luiti et al.

Polarized Target

Run in Polarized and Unpolarized Mode.

B Field held at const value for both states

LHe level, temp. etc. held const for both states

RF Saturation to Enhance P_{zz}

ND₃ Vector polarized

Vector Polarization ∞ Sum of Peak Areas

Tensor Polarization ∞ Diff of Peak Areas

RF Saturation to Enhance P_{zz}

 $\theta = 90$

 $\theta = 0$

no quadrupole

interaction

<u>RF Saturate one of the peaks</u>

kill the m=0 <=> m=-1 transition, which enhances the m=1 <=> m=0 transition

Pzz = 20% for 2.5T at 1K

good results even with only 2.5 T field

Meyer and Schilling , 1984 Proceedings of the 4th Int. Workshopon Polarized Target Materials & Techniques

RF Saturation to Enhance P_{zz}

RF Saturate one of the peaks

kill the m=O <=> m=-1 transition, which enhances the m=1 <=> m=O transition

Pzz = 30% for 5.0 T at 1K

Packing-Fractions & Dilution-Factors

Target Wall

- Packing Fraction essentially amount of material in target cup. This is a number.
- Dilution Factor (f) ratio of rates of free polarizable nucleons (proton) to all nucleons composing the target sample (nitrogen, NMR coils, ...). This is kinematics dependant.
- Need Packing Fraction and Dilution Factor for each target load used during running of experiment.

Liquid ⁴He

NH₃ Beads

