Nuclear PDFs: Status and Prospects

Hannu Paukkunen

University of Jyväskylä & Helsinki Institute of Physics

Outline

I A brief overview of the existing nuclear PDFs

II The case of neutrino-nucleus DIS data

III Exciting dijet results from the LHC p+Pb run

IV LHeC & EIC prospects

V Summary

Global nPDF fits – tests of factorization

- General observation: $\sigma^{\text{bound nucleon}} \neq \sigma^{\text{free nucleon}}$
- Search for <u>process independent</u> nPDFs to realize such differences

$$\sigma_{\mathrm{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\mathrm{DIS}}^{\ell+i\to\ell+X}(\mu^2)$$
 Nuclear PDFs, obeying the standard DGLAP Usual perturbative coefficient functions

The contemporary NLO nPDF fits

$$f_i^{p,A}(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2)$$

	HKN07	EPS09	DSSZ	nCTEQ prelim.
Ref.	Phys. Rev. C76 (2007) 065207	JHEP 0904 (2009) 065	Phys.Rev. D85 (2012) 074028	arXiv:1307.3454
Order	LO & NLO	LO & NLO	NLO	NLO
Neutral current e+A / e+d DIS	√	√	√	√
Drell-Yan dileptons in p+A / p+d	√	√	√	√
RHIC pions in d+Au / p+p		√	√	
Neutrino-nucleus DIS			√	
Q ² cut in DIS	1GeV	1.3GeV	1GeV	2GeV
# of data points	1241	929	1579	708
Free parameters	12	15	25	17
Error sets available		√	V	√
Error tolerance $\Delta \chi^2$	13.7	50	30	35
Baseline	MRST98	CTEQ6.1	MSTW2008	CTEQ6M
Heavy quark treatment	ZM_VFNS	ZM_VFNS	GM_VFNS	GM_VFNS

Kinematical coverage of the nuclear data

Comparison: Valence quarks

 \odot Some differences between EPS09, HKN07 & DSSZ.... (data constraints for x=0.1...1)

...but the preliminary nCTEQ curves show a really drastic difference

$$d\sigma^{\text{DIS}} \sim \left(\frac{4}{9}\right) u_v^A + \left(\frac{1}{9}\right) d_v^A$$

$$\sim u_v^A \left[R_{uv} + R_{dv} \frac{d_v^p}{u_v^p} \frac{Z + 4N}{N + 4Z} \right]$$

$$\approx u_v^A \left[R_{uv} + \frac{1}{2} R_{dv} \right]$$

No real constraints for R_{uV} and R_{dV} separately!

Comparison: Sea Quarks

 \circ No qualitative disagreements in the data constrained region (x=0.01...0.1)

The large-x behaviour reflects the gluons (above the parametrization scale)

No qualitative disagreements to preliminary nCTEQ results either

Comparison: Gluons

Difference between EPS09 & DSSZ:

The antishadowing and EMC effect in EPS09 comes from the RHIC pion data

 $FF(g \rightarrow pion, A) / FF(g \rightarrow pion, p)$

DSSZ advocated nuclear modifications in the fragmentation functions. No antishadowing nor EMC effect.

Both can fit the pion data, but the origin of the effect is different physics.

Comparison: Gluons

Strongest shadowing and largest error band in nCTEQ

Higher Q² cut has removed part of the small-Q² DIS data (largest DGLAP effects).

No pion data included yet

II The case of neutrino-nucleus DIS data

Some remarks regarding neutrino DIS

- Neutrino DIS probes different partonic combinations than e.g. the charged lepton DIS
 - Complementary information on the PDFs (especially the strange quark)

$$d^{2}\sigma^{\nu A} \propto \left(d^{A} + s^{A} + b^{A}\right) + (1 - y)^{2} \left(\overline{u}^{A} + \overline{c}^{A}\right)$$
$$d^{2}\sigma^{\overline{\nu}A} \propto \left(\overline{d}^{A} + \overline{s}^{A} + \overline{b}^{A}\right) + (1 - y)^{2} \left(u^{A} + c^{A}\right)$$

VS.

$$d^2 \sigma^{\ell^{\pm} A} \propto \frac{4}{9} \left(u^A + c^A + \overline{u}^A + \overline{c}^A \right) + \frac{1}{9} \left(d^A + s^A + b^A + \overline{d}^A + \overline{s}^A + \overline{b}^A \right)$$

- Data taken with heavy targets (Fe, Pb)Nuclear PDFs
- The adequacy of the factorization in nuclear neutrino DIS has been studied by independent groups. The conclusions are contradictory:

nCTEQ: No ; Paukkunen & Salgado: Yes ; De Florian et.al (DSSZ): Yes

Phys. Rev. D77 054013 (2008) Phys. Rev. D80 094004 (2009) Phys. Rev. Lett. 106, 122301 (2011)

JHEP 1007 (2010) 032 Phys.Rev.Lett. 110 (2013) 212301

Phys.Rev. D85 (2012) 074028

The high-energy neutrino data

Three independent data sets: NuTeV (Fe), CDHSW (Fe) and CHORUS (Pb)
 (absolute cross sections)

- Typical kinematical cuts: $Q_{\rm cut}^2 > 4\,{\rm GeV^2}, {\rm \ and \ } W_{\rm cut}^2 > 12.25\,{\rm GeV^2}$
 - ~ 2000 NuTeV, 1000 CHORUS, 1000 CDHSW datapoints
- The large kinematical overlap should enable to check the mutual compatibility

Neutrinos: The nCTEQ work

The nCTEQ claimed for having observed non-universal nuclear effects in the NuTeV cross-section data

Phys. Rev. D77 054013 (2008) Phys. Rev. D80 094004 (2009)

Some charged lepton data

Some NuTeV neutrino data data

Fit to the NuTeV neutrino data

Neutrinos: The nCTEQ work

A global nPDF analysis including NuTeV & CHORUS neutrino cross-section data

$$\chi^2 = \sum_{l^{\pm} A \text{ data}} \chi_i^2 + \sum_{\nu A \text{ data}} w \chi_i^2$$

I[±]A gets worse as w is increased

TAI	BLE II.	Phys. Rev. Lett. 106, 122301 (2011) Summary table of a family of compromise fits.				
w	$l^\pm A$	χ^2 (/pt)	νA	χ^2 (/pt)	total $\chi^2(/pt)$	
0	708	638 (0.90)		• • •	638 (0.90)	
1/7	708	645 (0.91)	3134	4710 (1.50)	5355 (1.39)	
1/2	708	680 (0.96)	3134	4405 (1.40)	5085 (1.32)	
1	708	736 (1.04)	3134	4277 (1.36)	5014 (1.30)	
∞	•••	•••	3134	4192 (1.33)	4192 (1.33)	

vA gets worse as w is decreased

- No satisfactory simultaneous fit to both I[±]A and νA data
- The use of NuTeV correlated errors was underscored. The same conclusion was, however, reached when adding all errors in quadrature.

JHEP 1007 (2010) 032

An independent systematic comparison

- More diverse set of neutrino DIS data: NuTeV (Fe), CDHSW (Fe) and CHORUS (Pb)
- The target mass corrections according to Accardi & Qiu [JHEP 0807 (2008) 090]

$$\int_{x}^{1} \frac{dz}{z} \omega_{ik}(z) f_{k}^{A}\left(\frac{x}{z}\right) \to \int_{x}^{1} \frac{dz}{z} \omega_{ik}(z) f_{k}^{A}\left(\frac{\xi}{z}\right) \qquad \xi \equiv 2x/(1+\sqrt{1+4x^{2}M^{2}/Q^{2}})$$

• Electroweak radiation Bardin et.al [JHEP 0506 (2005) 078] as a part of the cross-sections

$$F_i^A = \sum \left[\omega_{ik}^{\mathrm{LO}} \left(1 + \Delta_k^{\mathrm{radiative}}\right) + \omega_{ik}^{\mathrm{NLO}}\right] \otimes f_k^A$$

No PDF-fitting involved, just a systematic comparison employing CTEQ6.6 & EPS09

Present the data as a weighted average

$$R_{\text{Average}}^{\text{CTEQ6.6}} \equiv \left(\sum_{i \in \text{fixed } x}^{N} \frac{R_i^{\text{CTEQ6.6}}}{\sigma_i}\right) \left(\sum_{i \in \text{fixed } x}^{N} \frac{1}{\sigma_i}\right)^{-1} \pm N \times \left(\sum_{i \in \text{fixed } x}^{N} \frac{1}{\sigma_i}\right)^{-1}$$

$$R^{ ext{CTEQ6.6}} \equiv rac{\sigma^{
u,\overline{
u}} \left(ext{Experimental}
ight)}{\sigma^{
u,\overline{
u}} \left(ext{CTEQ6.6}
ight)}$$
 virtually independent of Q^2

JHEP 1007 (2010) 032

For example, the CHORUS data in an excellent agreement with the EPS09 and CTEQ6.6

JHEP 1007 (2010) 032

Neutrino-energy-dependent inconsistencies in the NuTeV data

Phys.Rev.Lett. 110 (2013) 212301

- Average also over the neutrino energy
- The NuTeV neutrino data systematically below the rest

—

Tension in a global fit

- However, the <u>shape</u> appears similar in all independent data sets.
- A way out: divide by the integrated cross-section for each beam energy

$$I_{\exp}^{\nu}(E) \equiv \sum_{i \in \text{fixed } E} \sigma_{\exp,i}(x, y, E) \times B_i(x, y)$$

$$\overline{R}^{\nu}(x,y,E) \equiv \frac{\sigma_{\rm exp}^{\nu}(x,y,E)/I_{\rm exp}^{\nu}(E)}{\sigma_{\rm CTEQ6.6}^{\nu}(x,y,E)/I_{\rm CTEQ6.6}^{\nu}(E)}.$$

Phys.Rev.Lett. 110 (2013) 212301

- Average also over the neutrino energy
- The NuTeV neutrino data systematically below the rest

Tension in a global fit

- However, the <u>shape</u> appears similar in all independent data sets.
- A way out: divide by the integrated cross-section for each beam energy

$$I_{\exp}^{\nu}(E) \equiv \sum_{i \in \text{fixed } E} \sigma_{\exp,i}(x, y, E) \times B_i(x, y)$$

$$\overline{R}^{\nu}(x,y,E) \equiv \frac{\sigma_{\rm exp}^{\nu}(x,y,E)/I_{\rm exp}^{\nu}(E)}{\sigma_{\rm CTEQ6.6}^{\nu}(x,y,E)/I_{\rm CTEQ6.6}^{\nu}(E)}.$$

Phys.Rev.Lett. 110 (2013) 212301

- An excellent agreement with e.g. CTEQ6.6+EPS09 nuclear PDFs
- A novel PDF re-weighting (not the NNPDF one) method was devised to reinforce the compatibilty

With the normalization, OK

Without the normalization the result of nCTEQ was "recovered" (for the NuTeV data).

- No reason to believe that the factorization would be violated.
- Points to an underestimation of the experimental errors (NuTeV)

Neutrinos: DSSZ

The DSSZ global fit included the neutrino data with no obvious difficulty:

Included neutrino <u>structure function</u> data from NuTeV, CHORUS & CDHSW

much more scarce than the absolute cross-section data

Used MSTW2008 free proton PDFs as a baseline

this set was already constrained by the NuTeV data

Added the MSTW2008 uncertainties in quadrature to the experimental errors

as if they were point-to-point uncorrelated errors.

Given all this, the neutrino data did not carry as large weight as e.g. in the nCTEQ work

III Exciting dijet result from the LHC p+Pb run

CMS has measured dijets using the 2013 p+Pb data

CMS PAS HIN-13-001

Data binned in dijet "pseudorapidity"

$$\eta_{
m dijet} \equiv (\eta_1 + \eta_2)/2$$
, \uparrow pseudorapidities of the individual jets

Note the rapidity shift

$$\eta_{
m shift} \equiv 0.5 \log{(E_{
m Pb}/E_{
m p})} pprox -0.465$$
 Pb —> $lacktriangle$ p (results presented in the collider frame)

Is this sensitive to the nuclear (gluon) PDF modifications?

Eskola, Paukkunen, Salgado, arXiv:1308.6733

Comparison to the NLO calculations – the gluon PDFs make a difference!

A striking agreement with CT10+EPS09!

IV LHeC / EIC prospects

LHeC: arXiv:1306.2486, arXiv:1206.2913

EIC: Work with the BNL EIC team

Kinematics: EIC vs. LHeC

 Both colliders would enlarge the kinematic coverage of the present nuclear DIS data - LHeC hugely, EIC a bit less

Estimate the impact of the LHeC and EIC data on the nPDFs by a direct fit to a sample of pseudodata

The LHeC & EIC pseudodata

 Samples of NC pseudodata (by N. Armesto for LHeC & M. Lamont for EIC) for reduced cross-sections

$$\sigma_r^{NC} = \frac{Q^4 x}{2\pi\alpha^2 Y_+} \frac{d^2 \sigma^{NC}}{dx dQ^2} = F_2 \left[1 - \frac{y^2}{Y_+} \frac{F_L}{F_2} \right] \qquad Y_+ = 1 + (1 - y)^2$$

was generated from using assuming:

LHeC

in the kinematical window: $10^{-5} < x < 0.01 & Q^2 < 1000 \text{ GeV}^2$

$$E_{lepton} = 5 \text{ GeV}, \quad E_{p,Au,Cu} = 50, 75, 100 \text{ GeV}$$
 (Phase 1)
 $E_{lepton} = 20 \text{ GeV}, \quad E_{p,Au,Cu} = 50, 75, 100 \text{ GeV}$ (Phase 2)

EIC

in the kinematical window: $10^{-3} < x < 1 \& Q^2 < 500 \text{ GeV}^2$

- Nuclear effects according to a dipole model (Eur. Phys. J. C26 (2002) 35-43) for LHeC and from EPS09LO for EIC.
- The inclusive cross-sections were combined to ratios

$$\frac{\sigma_{\text{reduced}}^{\text{Ca}}(x, Q^2)}{\sigma_{\text{reduced}}^{\text{p}}(x, Q^2)}, \quad \text{and} \quad \frac{\sigma_{\text{reduced}}^{\text{Pb}}(x, Q^2)}{\sigma_{\text{reduced}}^{\text{p}}(x, Q^2)}$$

Before the fit: the LheC pseudodata vs. EPS09

After the fit: LHeC

Effect in the nuclear modificaton factors, LHeC

A drastic reduction in the small-x gluon and sea quark uncertainties

Before the fit: some EIC pseudodata vs. baseline fit

After the fit: some EIC pseudodata vs. new fit

Effects in the nuclear modificaton factors: EIC

"Phase 2"

Effects in the nuclear modificaton factors: LHeC vs. EIC

LHeC would reach smaller values of x --> better constraints

Summary

Presented the current status of the nPDFs

Large differences among independent fits.

The LHC p+Pb data are expected to have an impact

Discussed the issue of neutrino-nucleus DIS

The recent controversy could be explained by inaccuracies in the experimental absolute normalization

Flashed the first dijet measurements from the LHC p+Pb runs

Already this first data could discriminate between different sets of nPDFs. Much more to come (W, Z, direct photon, ...)

Discussed LHeC & EIC prospects

Would allow to study the nPDFs (at small x) to a similar precision as done in HERA for the free proton