Highlights of the eA Program at an EIC

Electron Ion Collider: The Next QCD Frontier

Understanding the glue that binds us all

arXiv:1212.1701

Thomas Ullrich QCD Frontier '13 Newport News October 21-22, 2013

pQCD and DGLAP & BFKL evolution works with high precision (⇒HERA, RHIC, LHC, Tevatron)

pQCD and DGLAP & BFKL evolution works with high precision (⇒HERA, RHIC, LHC, Tevatron) PDF: glue dominates for x < 0.1

Issues with linear DGLAP/BFKL:

- $G_{sea}(x,Q^2) > G_{glue}(x,Q^2)$ at low Q^2 ?
- xG rapid rise violates unitary bound
- Cannot describe energy-independence of diffractive cross-section
 G(,Q²) must saturate ⇒ how?

New Regime of Hadronic Wave Function?

New Approach: Non-Linear Evolution

- At very high energy: recombination compensates gluon splitting
- BK/JIMWLK: non-linear effects ⇒ saturation characterized by Q_s(x)
 - Describe physics at low-x
 & low to moderate Q²
 - Wave function is Color
 Glass Condensate in IMF description
- Where does saturation of gluons sets in?
- Whats the dynamic of the saturation process?

Evidence for Saturation at RHIC in dAu

4

 X^{frag}_{Δ}

Saturation Scale Q_S: What do we know?

 $R \sim A^{1/3}$

significantly lower energy in nuclei

The Pre-EIC Era

Recall:

- ▶ 5+100 GeV $\Rightarrow \sqrt{s} \sim 45$ GeV
- ▶ 10+100 GeV $\Rightarrow \sqrt{s} \sim 63$ GeV
- ▶ 20+100 GeV $\Rightarrow \sqrt{s} \sim 90$ GeV

Plots has more dimensions:

- Statistics
 - typically low, large bins, no multidifferential studies
- Breadth of Measurements
 - mostly inclusive
 - often no comprehensive set of measurements (incl., SIDIS, excl., diffractive, ...)

The Pre-EIC Era

Recall:

- ▶ 5+100 GeV $\Rightarrow \sqrt{s} \sim 45$ GeV
- ▶ 10+100 GeV $\Rightarrow \sqrt{s} \sim 63$ GeV
- ▶ 20+100 GeV $\Rightarrow \sqrt{s} \sim 90$ GeV

Plots has more dimensions:

- Statistics
 - typically low, large bins, no multidifferential studies
- Breadth of Measurements
 - mostly inclusive
 - often no comprehensive set of measurements (incl., SIDIS, excl., diffractive, ...)

Inclusive DIS in eA: Bread & Butter ?

$$\frac{d^2 \sigma^{eA \to eX}}{dx dQ^2} = \frac{4\pi \alpha^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$
quark+anti-quark

• Expect strong non-linear effects in FL

J. Bartels *et al.* Modified GBW Dipole model (*see INT proceedings*)) Relative

contributions of higher twist effects to F_{L} amplified in *e*A

Impressive plot but in real life F_L is hard to measure

FL, F2: Usual Approach?

- Many plots of this type on the market
 - Zoo of curves often with outdated nPDFs
 - No single clear prediction, one curve will fit at the end!?
 - Most solid approach: repeat constraint fit with EIC pseudo-data
 see Hannu's talk
- WP: Use different approach to distinguish saturation versus standard DGLAP picture: A dependence
 - ► CGC A^{1/3} dependence, pQCD not so clear

Inclusive DIS in eA

- Measurement of F_L requires running at different \sqrt{s}
- Rosenbluth separation: slope of y²/Y+ for different s at fixed x & Q² $\sigma_r(x,Q^2) = F_2^A(x,Q^2) - \frac{y^2}{Y^+}F_L^A(x,Q^2)$
- F₂, F_L: negligible stat. error, systematics dominated
 - absolute normalization uncertainty 1% assumed (HERA ~2%)
- Precision nPDF: Huge impact on pA, AA programs
- Issue: Need overlap between sat. models and DGLAP where both applicable: Q² ≥ 1-2 GeV² and x~1-5×10⁻⁴ ⇒ √s ≥ 80 GeV

 \Rightarrow see next talk by Hannu

Work in progress... (H. Paukkunen)

- EIC pseudo-data included in global EPS09 fit
- Only 20+100 GeV and 5+100 GeV included so far
- more coming ... (also charm)

eAu/ep 20+100GeV

 \Rightarrow see next talk by Hannu

Work in progress... (H. Paukkunen)

- EIC pseudo-data included in global EPS09 fit
- Only 20+100 GeV and 5+100 GeV included so far
- more coming ... (also charm)

 \Rightarrow see next talk by Hannu

Work in progress... (H. Paukkunen)

- EIC pseudo-data included in global EPS09 fit
- Only 20+100 GeV and 5+100 GeV included so far
- more coming ... (also charm)

 \Rightarrow see next talk by Hannu

Work in progress... (H. Paukkunen)

- EIC pseudo-data included in global EPS09 fit
- Only 20+100 GeV and 5+100 GeV included so far
- more coming ... (also charm)

Carbon (scaled from Pb)

Simple Measurement

Theory (Bo-Wen, Feng, et al.) Pronounced saturation effect

Simple Measurement

Theory (Bo-Wen, Feng, et al.) Pronounced saturation effect

Simple Measurement

Theory (Bo-Wen, Feng, et al.) Pronounced saturation effect

Compare with what?

- LTS model/MC
- Use PYTHIA (ep) with nPDF (EPS09) + nuclear effects from DPMJet-III
 - Caution: DPMJet has issues in other parts

- Clear key measurement
- Significant difference between sat and non-sat case
- Need to adjust theory predictions due to lack of parton showers (see next slide how to avoid)
- Has equivalent to pA (e.g. RHIC forward measurements)

- Clear key measurement
- Significant difference between sat and non-sat case
- Need to adjust theory predictions due to lack of parton showers (see next slide how to avoid)
- Has equivalent to pA (e.g. RHIC forward measurements)

- Clear key measurement
- Significant difference between sat and non-sat case
- Need to adjust theory predictions due to lack of parton showers (see next slide how to avoid)
- Has equivalent to pA (e.g. RHIC forward measurements)

- J_{eAu} = Yield_{eAu}/Yield_{ep} avoids peak/shape issues (almost)
- Issues
 - x_A^{frag} in pA is a very rough estimate of x_g
 - in eA situation is better but will require also some modeling
- Differential studies (Q², x (or W), p_T^{trigger}, p_T^{assoc} bins) will require considerable luminosity (above 10 fb⁻¹)

Diffractive Processes in eA

Diffractive physics will be *the* major component of the eA program at an EIC

- High sensitivity: $\sigma \sim [g(x,Q^2)]^2$
- Only known process where spatial gluon distributions can be extracted

Diffractive Events: Experimental Side

How to identify diffractive events?

- Rapidity Gap
 - requires hermetic (large acceptance) detector
- Separating coherent from incoherent diffraction
 - detector and IR needs to be carefully designed to detect nuclear breakup
- Limitation at a collider
 - Coherent: scattered ion cannot be measured, t not directly measurable (may be in very light ions)
 - Breakup can be detected using emitted *n* and γ, some charged fragments can be measured in Roman Pots

Large Rapidity Gap Method (LRG)

- Identify Most Forward Going Particle (MFP)
 - Works at HERA but higher √s
 - EIC smaller beam rapidities

Hermeticity requirement:

- needs just to detector presence
- does not need momentum or PID
- simulations: √s not a show stopper for EIC (can achieve 1% contamination, 80% efficiency)

Diffractive ρ^{0} production at EIC: η of MFP

Detecting Nuclear Breakup

- Detecting all fragments p_{A'} = ∑p_n + ∑p_p + ∑p_d + ∑p_α ... not possible
- Focus on n emission
 - Zero-Degree Calorimeter
 - Requires careful design of IR
- Traditional modeling done in pA:
- Intra-Nuclear Cascade
 - Particle production
 - Remnant Nucleus (A, Z, E*, ...)
 - ISABEL, INCL4
- **De-Excitation**
 - Evaporation
 - Fission
 - Residual Nuclei
 - Gemini++, SMM, ABLA (all no γ)

- Additional measurements:
 - Fragments via Roman Pots
 - γ via EMC

Experimental Reality

Here eRHIC IR layout:

Need ±X mrad opening through triplet for *n* and room for ZDC

Big questions:

- Excitation energy E*?
- ep: dσ/M_Y ~ 1/M_Y²

eA? Assume ep and use E* = M_Y - m_p as lower limit

Experimental Reality

Here eRHIC IR layout:

Need ±X mrad opening through triplet for *n* and room for ZDC

Big questions:

- Excitation energy E*?
- ep: $d\sigma/M_{Y} \sim 1/M_{Y}^{2}$

Simulations using Gemini++ & SMM show it works:

- For E^{*}tot ≥ 10 MeV and 2.5 mrad n acceptance we have rejection power of at least 10⁵.
- Separating incoherent from coherent diffractive events is possible at a collider with *n*-detection via ZDCs alone

Exclusive Vector Meson Production

- Unique probe allows to measure momentum transfer t in eA diffraction
 - in general, one cannot detect the outgoing nucleus and its momentum
 - here:

Exclusive Vector Meson Production

- Unique probe allows to measure momentum transfer t in eA diffraction
 - in general, one cannot detect the outgoing nucleus and its momentum
 - here:

20

Exclusive Vector Meson Production

- Sartre event generator (bSat & bNonSat = linearized bSat)
- As expected: big difference for ϕ less so for J/ψ
- Note: A^{4/3} scaling strictly only valid at large Q²

The Holy Grail do/dt

- Goal: going after the source distribution of gluons through Fourier transform of dσ/dt
- Find: Typical diffractive pattern for coherent (non-breakup) part
- As expected: J/ Ψ less sensitive to saturation than ϕ
- Need this sliced in x bins \Rightarrow luminosity hungry
- Crucial: t resolution and reach

- **Idea**: momentum transfer t conjugate to transverse position (b_T)
 - coherent part probes "shape of black disc"
 - incoherent part (dominant at large t) sensitive to "lumpiness" of the source (fluctuations, hot spots, ...)

Spatial source distribution: $F(b) \sim \frac{1}{2\pi} \int d\Delta \Delta J_0(\Delta b) \sqrt{d\Delta \Delta J_0(\Delta b)}$

- Idea: momentum transfer t conjugate to transverse position (b_T)
 - coherent part probes "shape of black disc"
 - incoherent part (dominant at large t) sensitive to "lumpiness" of the source (fluctuations, hot spots, ...)

Spatial source distribution: $F(b) \sim \frac{1}{2\pi} \int d\Delta \Delta J_0(\Delta b) \sqrt{\frac{d}{d}}$

- Idea: momentum transfer t conjugate to transverse position (b_T)
 - coherent part probes "shape of black disc"
 - incoherent part (dominant at large t) sensitive to "lumpiness" of the source (fluctuations, hot spots, ...)

Spatial source distribution: $F(b) \sim \frac{1}{2\pi} \int d\Delta \Delta J_0(\Delta b) \sqrt{\frac{da}{dt}}$

- Idea: momentum transfer t conjugate to transverse position (b_T)
 - coherent part probes "shape of black disc"
 - incoherent part (dominant at large t) sensitive to "lumpiness" of the source (fluctuations, hot spots, ...)

Spatial source distribution: $F(b) \sim \frac{1}{2\pi} \int d\Delta \Delta J_0(\Delta b) \sqrt{\frac{d\sigma}{dt}}$

- Idea: momentum transfer t conjugate to transverse position (b_T)
 - coherent part probes "shape of black disc"
 - incoherent part (dominant at large t) sensitive to "lumpiness" of the source (fluctuations, hot spots, ...)

Spatial source distribution: $F(b) \sim \frac{1}{2\pi} \int d\Delta \Delta J_0(\Delta b) \sqrt{\frac{d\sigma}{dt}}$

- Idea: momentum transfer t conjugate to transverse position (b_T)
 - coherent part probes "shape of black disc"
 - incoherent part (dominant at large t) sensitive to "lumpiness" of the source (fluctuations, hot spots, ...)

Spatial source distribution: $F(b) \sim \frac{1}{2\pi} \int d\Delta \Delta J_0(\Delta b) \sqrt{\frac{d\sigma}{dt}}$

- Idea: momentum transfer t conjugate to transverse position (b_T)
 - coherent part probes "shape of black disc"
 - incoherent part (dominant at large t) sensitive to "lumpiness" of the source (fluctuations, hot spots, ...)

Spatial source distribution: $F(b) \sim \frac{1}{2\pi} \int d\Delta \Delta J_0(\Delta b) \sqrt{\frac{d\sigma}{dt}}$

- Idea: momentum transfer t conjugate to transverse position (b_T)
 - coherent part probes "shape of black disc"
 - incoherent part (dominant at large t) sensitive to "lumpiness" of the source (fluctuations, hot spots, ...)

Spatial source distribution: $F(b) \sim \frac{1}{2\pi} \int d\Delta \Delta J_0(\Delta b) \sqrt{}$

 $t = \Delta^2/(1-x) \approx \Delta^2$ (for small x)

- J/ ψ perfect for obtaining F(b) in both cases sat and non-sat
- ϕ less so since coherence distorts F(b)
- but also: difference in F(b) of ϕ and J/ψ reveals saturation
- Note: Error calculation is tricky here (btw: plots have errors).
 Recent studies: Fourier transformation runs into trouble at 1 fb⁻¹

Parton Propagation and Fragmentation

Hadronization not well understood non-perturbative process

- Nuclei as space-time analyzer
- EIC can measure:
 - fragmentation time scales to understand dynamic
 - in medium energy loss to characterize medium

Observables

- p_T distribution broadening:
- attenuation of hadrons:

$$R_{A}^{h}(Q^{2}, x_{Bj}, z, P_{T}) = \frac{N_{A}^{h}(Q^{2}, x_{Bj}, z, P_{T})/N_{A}^{e}(Q^{2}, x_{Bj})}{N_{D}^{h}(Q^{2}, x_{Bj}, z, P_{T})/N_{D}^{e}(Q^{2}, x_{Bj})}$$

$$\Delta P_T^2 = \langle P_T^2 \rangle_A - \langle P_T^2 \rangle_D$$

Semi-Inclusive Studies

HERMES: v = 2-25 GeV EIC: 10 < v < 1600 GeV EIC: *heavy flavor*!

Points: energy loss models with attenuation of pre-hadrons + medium induced energy loss. Lines: pure energy loss calculations

Difference D, π from D(z)

- Slope of D's sensitive to \widehat{q} and FF
- Strong Sensitivity of Shape on v is powerful tool

pA:

• Saturation effects at forward rapidities (di-hadrons, ridge)

pA:

Saturation effects at forward rapidities (di-hadrons, ridge)

AA:

- Initial conditions, G(x, Q², b_T, k_T)
 - > understanding of v_n , ultimately η/s ,

pA:

Saturation effects at forward rapidities (di-hadrons, ridge)

AA:

- Initial conditions, G(x, Q², b_T, k_T)
 - understanding of v_n , ultimately η/s ,
- Energy loss & hadronization
 - cold matter energy loss, hadron formation

pA:

Saturation effects at forward rapidities (di-hadrons, ridge)

AA:

- Initial conditions, G(x, Q², b_T, k_T)
 - understanding of v_n , ultimately η/s ,
- Energy loss & hadronization
 - cold matter energy loss, hadron formation

Cosmic Ray Physics:

- Cross-section v+A (ultra-high cosmic ray showers)
- Depth of shower maxima in air shower (onset of saturation)

Take Away Message

The e+A program at an EIC is unprecedented, allowing the study of matter in a new regime where physics is not described by "ordinary" QCD

- non-linear QCD/saturation/higher twist effects,
- properties of glue (momentum & space-time)
- cold matter energy loss
- new insight into fragmentation processes

Take Away Message

The e+A program at an EIC is unprecedented, allowing the study of matter in a new regime where physics is not described by "ordinary" QCD

- non-linear QCD/saturation/higher twist effects,
- properties of glue (momentum & space-time)
- cold matter energy loss
- new insight into fragmentation processes

The e+A program is also a challenge experimentally

- new difficulties compared to e+p
- measurements never conducted in a collider
- no show stoppers found so far