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Outline: 

 High-energy scattering in the target rest frame: cross section 
(color) fluctuations, color transparency, and nuclear shadowing 

 Nuclear shadowing in the leading twist approach: predictions 
for inclusive, diffractive and exclusive processes

 Gluon shadowing: exclusive J/𝜓 photoproduction in Pb-Pb UPCs at   
    the LHC; EIC potential

 Conclusions
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High-energy scattering in target rest frame  
• Soft hadron-hadron scattering: a fast projectile (pion, proton, photon) 
fluctuates into configurations with different cross sections.

• The lifetime of these fluctuations can be larger than the target size:   

• This leads to the concept of cross section fluctuations:

Feinberg and Pomeranchuk (1956)
Good and Walker (1960)
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Figure 18. The distribution over cross sections P(σ ) for protons and pions, presented in
equation (47).

The third of equations (48) is a relation between the second moment 〈σ 2〉 and the quantity
ωσ . Using equation (40), one can write that

ωσ =
(

dσ/dt
)inel
t=0

(

dσ/dt
)el
t=0

= 〈σ 2〉 − 〈σ 〉2

〈σ 〉2
(49)

which demonstrates that ωσ is proportional to the amount of diffractive dissociation. ωσ can
be extracted from the experiment. From the data on the total cross section of neutron–deuteron
scattering [70] and from the theoretical analysis of [71], which used the proton–deuteron data
[72], ωσ = 0.25 for plab ≈ 200 GeV c−1. Another source of information on ωσ is the data on
diffractive dissociation on hydrogen. The data leads to a similar value of ωσ [69].

The last equation in (48) is based on the analysis of [69] of the data on coherent diffractive
dissociation of protons on deuterons [73]. It indicates that Pp(σ ) is symmetrical around its
average value. In order to impose further restrictions on higher moments of P(σ ), one has to
consider diffractive dissociation on heavier nuclei, for example, on 4He.

5.3. Total and diffractive dissociation cross sections of hadron–deuteron scattering

In the previous subsection we demonstrated that in order to study the second moment of P(σ ),
〈σ 2〉, one can study either diffractive dissociation on hydrogen (see equation (40)) or the total
hadron–deuteron cross section. In this subsection, the latter approach is considered in detail.

• Cross section fluctuations lead to:
- diffractive dissociation of beam particles
- Glauber shadowing correction

Frankfurt, Miller, Strikman (1994)
Blattel et al. (1993, 1996)

distribution over σ 
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High-energy scattering in target rest frame (2)  
• DIS: a fast virtual photon fluctuates into quark-gluon configurations (dipoles)

 Bjorken (1971)

 

with the lifetime 

• These dipoles can be roughly of two types:
- asymmetric in photons’s momentum sharing (pre-QCD align jet model): 

        large transverse size                                   and small probability ~1/Q2

- symmetric in photons’s momentum sharing (pQCD)  ➞ small transverse size and 
small cross section:

F. Low (1975)
Nikolaev, Zakharov (1991)
Blattel et al. (1993)

• The presence of small-size weakly interacting dipoles is an example of 
color transparency (CT).

• In DIS, CT is needed for scaling of the total cross section.
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Color transparency  
• CT is a dynamical QCD phenomenon of absence of initial/final state 
interactions of small-size quark-gluon configurations.
 
• CT has been observed experimentally (Fermilab, HERA, BNL, JLab) and will 
be studied in the future (JLab12, COMPASS, FAIR).  

• CT plays multiple roles:
- probes dynamics and space-time evolution of the strong interaction
- probes the minimal Fock components of hadrons
- used in proofs of factorization for exclusive processes

 

Dutta, Hafidi, Strikman (2012)

High energy CT = QCD factorization theorem for DIS exclusive meson 
processes (Brodsky,Frankfurt, Gunion,Mueller, MS 94 - vector mesons,small x; general 
case Collins, Frankfurt, MS 97). The prove is based (as for dijet production) on the CT 
property of QCD not on closure like the factorization theorem for inclusive DIS.   

!"#$%&'( )("$$*#'&+ !#%(*)), -.'(. ') ("/(0/"1/* '& !%-*#) %2 3 4.* '&5'(*) /"1*/

$.* 5'22*#*&$ !"#$%& )!*('*)3 4.* (%&$#'10$'%& %2 5'"+#"6) '& -.'(. $.* ."#5 )("$$*#'&+ !#%(*))

'&7%/7*) 6%#* $."& $.* 6'&'606 &061*# %2 !"#$%&) ') )0!!#*))*5 18 3 9& '6!%#$"&$ (%&:

)*;0*&(* %2 2"($%#'<"$'%& ') $."$ $.* =5*!*&5*&(* %2 $.* "6!/'$05* #*)$) *&$'#*/8 '& $.* >?@3

4.0), 5'22*#*&$ !#%(*))*) !#%1'&+ $.* )"6* >?@ ).%0/5 *A.'1'$ $.* )"6* =5*!*&5*&(*3

4.2 Space–time picture: “Squeezing” of hadrons

4.* !.8)'() %2 ."#5 *A(/0)'7* !#%(*))*) "$ )6"// 1*(%6*) 6%)$ $#"&)!"#*&$ -.*& 2%//%-'&+

$.* )!"(*=$'6* *7%/0$'%& '& $.* $"#+*$ #*)$ 2#"6*3 9) '& $.* (")* %2 '&(/0)'7* )("$$*#'&+, $.')

"!!#%"(. "//%-) %&* $% *A!%)* $.* /'6'$) %2 $.* /*"5'&+=$-')$ "!!#%A'6"$'%&, "&5 $% ;0"&$'28

!%-*# (%##*($'%&) 50* $% $.* !&'$* $#"&)7*#)* )'<* %2 $.* !#%50(*5 6*)%&3

B& *A(/0)'7* 7*($%# 6*)%& !#%50($'%&, , %&* ("& '5*&$'28 $.#** 5')$'&($ )$"+*)

'& $.* $'6* *7%/0$'%& '& $.* $"#+*$ #*)$ 2#"6*3 4.* 7'#$0"/ !.%$%& 5'))%('"$*) '&$% " 5'!%/*

%2 $#"&)7*#)* )'<* "$ " $'6* (%. 1*2%#* '&$*#"($'&+ -'$. $.*

$"#+*$, !"# C;3 DEF3 4.* 5'!%/* $.*& )("$$*#) 2#%6 $.* $"#+*$, "&5 G/'7*)H 2%# " $'6*

1*2%#* 2%#6'&+ $.* !&"/ )$"$* 7*($%# 6*)%&3 4.* 5'22*#*&(* '& $.* $'6* )("/*) ') 50* $% $.*

)6"//*# $#"&)7*#)* 6%6*&$" D7'#$0"/'$'*)F "//%-*5 18 $.* 6*)%& -"7* 20&($'%& ") (%6!"#*5 $%

$.* 7'#$0"/ !.%$%&3

B& $.* /*"5'&+ /%+"#'$.6'( "!!#%A'6"$'%& '& IJ@ , $.* *22*($) %2 IJ@ #"5'"$'%& ("&

"+"'& 1* "1)%#1*5 '& $.* "6!/'$05* 2%# $.* )("$$*#'&+ %2 $.* )6"//=)'<* 5'!%/* %22 $.* $"#+*$3 B$

("& 1* ).%-& 18 5'#*($ ("/(0/"$'%& %2 K*8&6"& 5'"+#"6) $."$ $.* /*"5'&+ $*#6 2%# )6"// 5'!%/*

)'<*) ') !#%!%#$'%&"/ $% $.* +*&*#"/'<*5 +/0%& 5')$#'10$'%&, *22 , -.*#* *22

LMN3 9 )'6!/*# "!!#%"(. ') $% '&2*# $.* #*)0/$ 2%# $.* '6"+'&"#8 !"#$ %2 $.* "6!/'$05* 2#%6

$.* *A!#*))'%& 2%# $.* (#%)) )*($'%&, C;3 DOF, 7'" $.* %!$'("/ $.*%#*63 4.* '6"+'&"#8 !"#$ ')

!#%!%#$'%&"/ $% $.* +*&*#"/'<*5 +/0%& 5')$#'10$'%& "$ "&5 3 9$ )02!('*&$/8 /"#+*

$

%
P

!%%
P

!#%(*))
Q"#5R)("$$*#'&+

"6!/'$05*
S*)%&R5')$#'10$'%&

>*&*#"/'<*5
!"#$%&R5')$#'10$'%&

"

&

!
"T
'

(

K'+0#* UV K"($%#'<"$'%& %2 $.* "6!/'$05* %2 ."#5 *A(/0)'7* 6*)%& !#%50($'%&, C;3 DPWF3

PX
10

⇒

Test of CT is critical element of the 
studies of 3D nucleon structure (GPDs) 
at EIC.  Squeezing becomes effective at 
much smaller Q than QLT  for which HT 
effects become a small correction. 

Brodsky et al. (1994)
Collins, Frankfurt, Strikman (1997)

Tests of CT is a crucial element of
studies of 3D structure at EIC.  
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Color transparency and nuclear shadowing  
• Factorization theorem for high-energy exclusive meson production (CT) for
   nuclear targets probes nuclear GPDs modified by nuclear shadowing:  

 

Frankfurt, Strikman, Koepf (1996)

• The gluon distribution in nuclei at small x is suppressed -- nuclear shadowing   

JHEP04(2009)065
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Figure 3. The nuclear modifications RV , RS , RG for Carbon (upper group of panels) and Lead
(lower group of panels) at our initial scale Q2

0 = 1.69 GeV2 and at Q2 = 100 GeV2. The thick black
lines indicate the best-fit results, whereas the dotted green curves denote the error sets. The shaded
bands are computed from eq. (2.13).

The narrow throat in the sea quark uncertainty band at x ∼ 10−2 . . . 10−1 reflects the

good constraining power of the precision DIS data. Towards higher x, the uncertainty grows

as the accuracy of the DY data is not enough to decisively nail down nuclear modification

for the sea quarks there. Note, however, that unlike in our earlier works, the parameter

ye was free. Towards small x the errors are perhaps surprisingly small given that there

are no direct data constraints. This is an artefact of the chosen form of the fit function

as the tight constraints at x ∼ 10−2 . . . 10−1 fix also the smaller-x behaviour leading to an

– 12 –

R=f
j/A

(x,Q²)/[Af
j/N

(x,Q²)]

 Nuclear PDFs have large uncertainties:
- limited kinematics
- indirect extraction of gluons via Q2 evolution
- assumptions about the initial shape
- different choice/treatment of data used in fits

 ➞ determination of nuclear PDFs and discrimination between different 
     approaches to small-x parton dynamics is one of key goals of EIC

    

• Good approx.:   

see talk by H. Paukkunen
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 Connection of shadowing and diffraction

• Pion-deuteron forward amplitude:

V. Gribov (1969)

deuteron form factor

shadowing correctionimpulse approximation

N
N

N

N

DDDD

ππ
ππ

Fig. 2. Graphs for pion-deuteron scattering.

Below we consider each graph in detail, assuming for simplicity that all involved particles
and the deuteron are spinless and the proton and the neutron are indistinguishable.

The contribution of the impulse approximation to the pion-deuteron scattering amplitude,
F imp
D (s, q), is

F imp
D (s, q)= i

∫ d4k

(2π)4
1

[(p12 + k)2 −m2 + iε][(p12 − k)2 −m2 + iε][(p12 + q + k)2 −m2 + iε]

×Γ

(

(

p1
2

− k
)2

,
(

p1
2

+ k
)2
)

Γ

(

(

p1
2

− k
)2

,
(

p1
2

+ q + k
)2
)

× fN

(

(

p+
p1
2

+ k
)2

, q2,
(p1
2

+ k
)2

,
(p1
2

+ q + k
)2
)

, (4)

where Γ is the D → NN vertex; fN is the pion-nucleon scattering amplitude; m is the
nucleon mass; q is the momentum transfer; p1 is the momentum of the initial deuteron.
The momentum flow used in Eq. (4) is depicted in Fig. 3.

+q

+k+q/21
p

-k

+k

1/2p

/21
p

11
pp

p-qp

Fig. 3. The momentum flow in the left graph in Fig. 2 and in Eq. (4).

In the deuteron rest frame, the inverse nucleon propagators in Eq. (4) are

13

• At high energies, incoming hadron interact with all nucleons of the target via its
fluctuations with

Feinberg, Pomeranchuk (1956)
Gribov, Ioffe, Pomeranchuk (1965)
Good, Walker (1960)

lc / pbeam / 1/x

• The second graph gives the shadowing correction expressed in terms of the elem. 
pion-nucleon diffractive cross section ➞ Gribov-Glauber theory of nuclear shadowing

moment of P(𝜎) from slide 3

• When generalized to hard processes with nuclei, 
Gribov’s theory leads to leading twist shadowing. 

Compare to the picture of successive interactions 
leading to higher twist shadowing  ➞

A-dependence of coherent ρ-meson production in dipole eikonal approximation - FKS95; 
J/ψ photoproduction corresponds to Q2=20 GeV2 curves  

=
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|t
=

0

General features of A-dependence of  the coherent VM production : for fixed Q2 - RV 
decreases with decrease of x, for fixed x - RV increases with Q2

VM VM

21

7



8

Leading twist theory of nuclear shadowing
A method to evaluate parton (sea quark and gluon) distributions in nuclei for 
small x as a function of х and impact parameter b at certain input scale Q0. 
Further Q2 dependence given by DGLAP.

 The approach is based on:

 The picture of the strong interactions at high energies in the laboratory frame,  
   Gribov-Glauber shadowing theory and its extension to eA DIS ➞ expression for   
   F2A(x,Q²) 
 
 Collinear factorization for total and diffractive DIS cross sections ➞  from F2A(x,Q²) to  
   individual nuclear parton distributions fj/A(x,Q²)

 Diffractive parton distributions in the proton (HERA) ➞ input for predictions 

Terminology “leading twist”: 
Shadowing is expressed via elementary diffraction ➞ diffraction is a leading-
twist phenomenon (HERA) ➞ the approach describes the leading twist 
component of nuclear shadowing (modulo modeling of N >2 contribution) 

L. Frankfurt, VG, M. Strikman, Phys. Rept. 512 (2012) 255
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the subscripts p and n refer to the free proton and neutron, respectively.
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Fig. 10. Graphs corresponding to sea quark nuclear PDFs. Graphs a, b, and c correspond to the
interaction with one, two, and three nucleons, respectively. Graph a gives the impulse approxi-
mation; graphs b and c contribute to the shadowing correction.
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Fig. 11. Graphs corresponding to the gluon nuclear PDF. For the legend, see Fig. 10.

Similarly to the inclusive case, the factorization theorem for hard diffraction in DIS states
that, at given fixed t and xIP and in the LT approximation, the diffractive structure
function FD(4)

2 can be written as the convolution of the same hard scattering coefficient
functions Cj with universal diffractive parton distributions fD(4)

j :

FD(4)
2 (x,Q2, xIP , t) = β

∑

j=q,q̄,g

1
∫

β

dy

y
Cj(

β

y
,Q2)fD(4)

j (y,Q2, xIP , t) , (47)

where β = x/xIP . The diffractive PDFs fD(4)
j are conditional probabilities to find a parton

31
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our numerical studies described below, � decreases with decreasing x, which reflects the onset of the strong interaction
regime for the increasing fraction of the configurations contributing to the PDFs.

We shall postpone the detailed discussion of � j
soft until Section 5.1.2. At this point, to get the feeling about the meaning

and magnitude of �
j
soft, we note that if diffraction were described by the aligned jet model, we would expect the typical

strength of the interaction of a large-size qq̄ configuration with the nucleon to be compatible to that for pions (⇢ mesons,
etc.), i.e., �aligned jet�N ⇡ 25 mb at x = 0.01 and �aligned jet�N ⇡ 40 mb at x = 10�5.

Applying the color fluctuation approximation to Eq. (61), we obtain our final expression for the nuclear parton distribu-
tion modified by nuclear shadowing,

xfj/A(x,Q 2
0 ) = Axfj/N(x,Q 2

0 ) � 8⇡A(A � 1) <e
(1 � i⌘)2

1 + ⌘2 Bdiff

Z 0.1

x
dxP�f D(3)

j (�,Q 2
0 , xP)

⇥
Z

d2b
Z 1

�1
dz1

Z 1

z1
dz2⇢A(Eb, z1)⇢A(Eb, z2)ei(z1�z2)xPmN e� A

2 (1�i⌘)�
j
soft(x,Q

2
0 )

R z2
z1 dz0⇢A(Eb,z0), (64)

where Afj/N ⌘ Zfj/p + (A � Z)fj/n; Q 2
0 is a low scale at which the color fluctuation approximation is applicable (see below).

The nuclear PDFs fj/A given by Eq. (64) are next-to-leading (NLO) PDFs since the nucleon diffractive PDFs f D(3)
j are obtained

from the NLO QCD fit.
Our master Eq. (64) determines the nuclear PDFs fj/A at a particular input scale Q 2 = Q 2

0 , which is explicitly present in
fj/N , f

D(3)
j and �

j
soft. The color fluctuation approximation is more accurate if the fluctuations are more hadron-like, i.e., when

the contribution of the point-like configurations (PLCs) is small. This demands that Q 2
0 is not too large. At the same time, we

would like to stay within the perturbative regime, where higher twist contributions to the diffractive structure functions
are still small and where the fits to diffractive PDFs do not have to be extrapolated too strongly. (In the extraction of the
diffractive PDFs from the HERA data on diffraction, only the data with Q 2 > 8.5 GeV2 were used [61]. However, it has been
checked that the extrapolation down to Q 2 = 4 GeV2 works with a good accuracy.) Accordingly, in our numerical analysis,
we use Q 2

0 = 4 GeV2. We will demonstrate that our results depend weakly on the choice of Q 2
0 , even if we keep �

j
soft fixed.

This is because the approximations discussed above are needed only for the interactions with three and more nucleons of
the target; the double rescattering contribution is evaluated in a model-independent way.

It is important to emphasize that while Eq. (61) gives a general expression for the effect of cross section (color)
fluctuations on themultiple interactions, Eq. (64) presents a particular approximation—the color fluctuation approximation.
In this approximation, the interaction cross section with N � 3 nucleons is �

j
soft(x,Q

2) = h� 3ij/h� 2ij, see Eq. (63). Eq. (64)
allows for a simple interpretation: the factor Bdiff

R 0.1
x dxP�f D(3)

j (�,Q 2, xP) describes the probability for a photon to diffract
into diffractive states in the interaction with a target nucleon at point (z1, Eb) and to be absorbed in the interaction with
another nucleon at point (z2, Eb), while the factor in the third line of Eq. (64) describes the interaction of the diffractive states
with other nucleons of the nucleus with the cross section �

j
soft between points z1 and z2.

It is important to note that �
j
soft(x,Q

2) can be determined experimentally by measuring nuclear shadowing with a light
nucleus, for instance, with 4He. Alternatively, �

j
soft(x,Q

2) can be extracted directly from coherent diffraction in DIS on
deuterium [128]. After �

j
soft(x,Q

2) will have been determined, the leading twist theory will contain no model-dependent
parameters and can be used to predict nuclear shadowing for an arbitrary nucleus in a completely model-independent way.
The discussed measurements can be carried out at a future Electron–Ion Collider.

In the treatment of multiple rescatterings in the leading twist theory of nuclear shadowing in Ref. [76], we used the
so-called quasi-eikonal approximation, which neglects color fluctuations and, hence, uses �

j
soft(x,Q

2) = �
j
2(x,Q

2) ⌘
h� 2ij/h� ij in Eq. (64). Such an approximation gives the results identical to Eq. (64) for the interaction with one and two
nucleons of the nuclear target. However, it neglects the presence of point-like configurations in the virtual photon wave
function and, hence, overestimates shadowing at x ⇠ 10�3, where the contribution of the interactionswithN > 2 is already
important, while the contribution of the point-like configurations is still significant. We will use a comparison between
the color fluctuation and quasi-eikonal approximations to illustrate the role of color fluctuations in Section 5.8. (Note that
the quasi-eikonal approximation is popular in the literature in spite of its deep shortcomings discussed above and also in
Section 3.1.4.)

In the very small-x limit, which for practical purposes means x < 10�2 (see Fig. 44), the factor ei(z1�z2)xPmN in Eq. (64) can
be safely neglected. This results in a significant simplification of the master formula after the integration by parts two times
(cf. [80]):

xfj/A(x,Q 2
0 ) = A xfj/N(x,Q 2

0 ) � 8⇡A(A � 1)Bdiff <e
(1 � i⌘)2

1 + ⌘2

Z 0.1

x
dxP�f D(3)

j (�,Q 2
0 , xP)

⇥
Z

d2Eb e�LTA(b) � 1 + LTA(b)
L2

, (65)

where L = A/2 (1 � i⌘)�
j
soft(x,Q

2
0 ); TA(b) = R 1

�1 dz ⇢A(z).

Leading twist theory of nuclear shadowing (2)
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Fig. 31. Predictions for nuclear shadowing at the input scale Q2
0 = 4 GeV2. The ratios Rj (ū and

c quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4. The four upper panels are
for 40Ca; the four lower panels are for 208Pb. Two sets of curves correspond to models FGS10 H
and FGS10 L (see the text).
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 Two curves correspond to uncertainty 
due to multiple scatterings ➞ 
 can be reduced by varying A
  
 Antishadowing is modeled using 
momentum sum rule

 Gluon shadowing > quark shadowing  
➞ large shadowing for FL

A(x,Q2)

EIC and LHeC are ideal places 
to test these predictions!
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Pb-208
Comparison to the results of global fits

EPS09 = Eskola, Puukkunen, Salgado, JHEP 04 (2009) 065
HKN07 = Hirai, Kumano, Nakano, PRC 76(2007) 065207 

ratios of the nuclear to nucleon PDFs are plotted as a function of x at two fixed values of
Q2: Q2 = 4 GeV2 (upper panels) and Q2 = 10 GeV2 (lower panels).
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Fig. 53. Comparison of predictions of the leading twist theory of nuclear shadowing [the area
bound by the two solid curves corresponding to models FGS10 H (lower boundary) and FGS10 L
(upper boundary)], the EPS09 fit (dotted curves and the corresponding shaded error bands) [51],
and the HKN07 fit (dot-dashed curves) [45]. The NLO fj/A(x,Q

2)/[Afj/N (x,Q2)] ratios for the
ū-quark and gluon distributions in 208Pb are plotted as functions of x at Q2 = 4 GeV2 (upper
panels) and Q2 = 10 GeV2 (lower panels).

As one can see from Fig. 53, the three compared approaches give rather close values for
nuclear shadowing in the sea-quark channel for a wide range of x, 10−5 ≤ x ≤ 0.02−0.03.
For larger x, the HKN07 fit deviates from the other two due to the assumed antishadowing
for the sea quarks.

In the gluon channel, our approach suggests much larger shadowing at Q2 = 4 GeV2 than
that suggested by the extrapolation of the EPS09 and HKN07 results. Here, however,
one has to make a distinction. While the shadowing in the gluon channel is insignificant
in the HKN07 fit for all Q2 scales, at the input scale Q2

0 = 1.69 GeV2, the EPS09 fit
suggests very large gluon shadowing with the very large theoretical uncertainty [51]. This
is a consequence of the fact that the available data cannot constrain the nuclear gluon
PDF at small x. (Note also that the large gluon shadowing in the EPS09 fit is mostly
driven by the RHIC data which are not in the kinematics where the leading twist pQCD
is applicable, see the discussion in Sec. 8.) Indeed, since the relevant nuclear data for
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Fig. 54. The ratio of the gluon distributions in 208Pb and the nucleon, gA(x,Q2)/[AgN (x,Q2)],
as a function of x for the EPS09 fit at Q2 = 1.69 GeV2 (the dotted curve with the shaded error
band) and in the leading twist theory of nuclear shadowing at Q2 = 4 GeV2 (the shaded area
spanned by the two solid curves, the same as in Fig. 53).

Q2 ≥ 4 GeV2 exist only for x ≥ 10−2, one is forced to assume the dominance of the LT
approximation down to Q2 ≈ 1 GeV2 and use ad hoc assumptions about nuclear PDFs for
smaller x where they are not constrained by the data. When these data are not included
in the fit, the resulting error band is huge.

To illustrate this point, in Fig. 54 we present the ratio of the gluon distributions in
208Pb and in the nucleon, gA(x,Q2)/[AgN(x,Q2)], as a function of x for the EPS09 fit
at Q2 = 1.69 GeV2 (the dotted curve with the shaded error band) and for our leading
twist theory of nuclear shadowing at Q2 = 4 GeV2 (the shaded area spanned by the
two solid curves, the same as in Fig. 53). As one can see from Fig. 54, the predicted
amounts of nuclear shadowing in the gluon channel for x < 10−3 are similar in the two
approaches. However, after short evolution in Q2 from Q2

0 = 1.69 GeV2 to Q2 = 4 GeV2,
the shadowing in the gluon channel in the EPS09 fit significantly reduces and becomes
noticeably smaller than in our LT approach (compare the solid and dotted curves in the
right column of panels in Fig. 53).

We point out, again, that nuclear shadowing in the gluon channel is essentially uncon-
strained by the fixed-target data. The future Electron-Ion Collider, with its deep reach
in the nuclear shadowing region and a large lever arm in Q2 should significantly improve
our knowledge of the gluon parton distribution in nuclei.

Recently nuclear PDFs have also been extracted using neutrino DIS data and combining
the neutrino and lepton DIS data [52,187–192]. At the moment, the results of such extrac-
tions are controversial: while the analyses of Refs. [52,187–189] seem to indicate that the
nuclear corrections are different between the charged and neutral lepton DIS, the analyses
of Refs. [190–192] find no such difference.
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• For quarks: shadowing is similar 

• For gluons: our shadowing is the largest at Q2=4 GeV2 
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 The leading twist theory of nuclear shadowing naturally predicts the 
dependence of nuclear PDFs on the impact parameter b:  

Probability to find a parton with given x and b 

nuclear density 

b
xP+

Dependence on the impact parameter
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Fig. 40. Impact parameter dependence of nuclear shadowing for 40Ca (upper green surfaces) and
208Pb (lower red surfaces). The graphs show the ratio Rj(x, b,Q2) of Eq. (132) as a function of
x and the impact parameter |!b| at Q2 = 4 GeV2. The top panel corresponds to ū-quarks; the
bottom panel corresponds to gluons. For the evaluation of nuclear shadowing, model FGS10 H
was used (see the text).

results for the b-integrated nPDFs (i.e., usual nPDFs), see Figs. 33 and 34. All curves
correspond to our input scaleQ2

0 = 4 GeV2 and to model FGS10 H. Note that since nuclear
shadowing depends on the impact parameter, so should antishadowing. We constrain the
amount of antishadowing by requiring the conservation of the momentum sum rule locally
in the impact parameter b [compare to Eq. (118)]:

∑

j=q,q̄

1
∫

0

dxxfj/A(x,Q
2, b) +

1
∫

0

dxxgA(x,Q
2, b) = 1 . (133)

100

R

j(x, b,Q2) =
fj/A(x,Q

2
, b)

ATA(b)fj/N (x,Q2)

• Until recently, unique feature of our approach ➞ spatial image of shadowing 
• Recent global QCD fit analysis finds similar results, I. Helenus et al, ArXiv:1205.5359
• Impact-parameter dependent PDFs=nuclear GPDs in the special limit of xi=0 ➞
   essential ingredient for calculation of hard exclusive processes with nuclei
   (DVCS, electroproduction of VM, etc.)!
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d�DVCS/dt ⇠ 1/Q4

d�BH/dt ⇠ 1/(tQ2)

Predictions for DVCS observables

• The shift is the measure of nuclear shadowing for sea quarks which increases the
size of the transverse distribution of quarks in nuclei <b2>.
• Similar shape for the gluon channel (coherent electroproduction of J/𝜓)

Author's personal copy

350 L. Frankfurt et al. / Physics Reports 512 (2012) 255–393

Fig. 80. The skewness ratio Rj/A of Eq. (208) as a function of ⇠ at Q 2
0 = 4 GeV2 for 40Ca (solid curves), 208Pb (dotted curves) and free proton (dot-dashed

curves). The left panel is for the ū-quark distribution; the right panel is for the gluon distribution.

Fig. 81. Coherent deeply virtual Compton scattering (DVCS) with nuclei.

evolution for GPDs introduces additional skewness (dependence of ⇠ ). Eq. (207) defines the nuclear GPDs that we shall use
below to make predictions for various observables in hard exclusive reactions with nuclei.

The skewness ratio R can also be introduced for nuclear targets and separate parton flavors:

Rj/A ⌘ Hj
A(x�, x�, t = 0,Q 2

0 )

fj/A(2x�,Q 2
0 )

= Hj
A(x�, x� = 0, t = 0,Q 2

0 )

fj/A(2x�,Q 2
0 )

= fj/A(x�,Q 2
0 )

fj/A(2x�,Q 2
0 )

. (208)

Here we used Eq. (207) and the fact that in the forward limit (x� ! 0 and t ! 0), the GPD H reduces to the usual PDFs.
Hence, the skewness ratio Rj/A is given in terms of the usual nuclear PDFs evaluated at different light-cone fractions.

Fig. 80 presents our predictions for Rj/A of Eq. (208) as a function of ⇠ at Q 2
0 = 4 GeV2. The solid curves correspond to

40Ca; the dotted curves correspond to 208Pb; models FGS10_H and FGS10_L give numerically indistinguishable predictions
for Rj/A. For comparison, we also give the skewness ratio Rj/A for the free proton target as dot-dashed curves. In Fig. 80, the
left panel corresponds to ū-quarks; the right panel corresponds to the gluon channel. As one can see from the figure, Rj/A
depends weakly on the atomicmass number and the parton flavor. Also, Rj/A is a weak function of x� for 10�5  x�  10�2.

The numerical value of Rj/A is very important for the phenomenology of GPDs. The fact that Rj/A for the proton is of the
order of 2�2.5 is in agreementwith the analysis of the HERA data on the skewness ratio R of Eq. (201) [141,228], the aligned
jet typemodel for the proton GPDs at the input scale [229,230], and the phenomenological parameterization of proton GPDs
as the conformal partial wave decomposition [227] (see the discussion in Ref. [227]). The value of Rj/A is somewhat smaller
for nuclei than for the free nucleon since nuclear shadowing tames the increase of nuclear PDFs with decreasing Bjorken x.
Note that the discussedmodelmay overestimate R(Q 2

0 ). Indeed, aswe discussed above, R ⇠ 2 corresponds to the dominance
of the AJM contribution with small transverse momenta. Nuclear shadowing reduces this contribution to nuclear PDFs as
compared to the contribution of components with large transversemomenta, for which R is closer to unity. Hence, the effect
of the reduction of Rj/A with an increase of A and a decrease of xmay be somewhat larger than presented in Fig. 80.

6.2.3. Leading twist nuclear shadowing and coherent nuclear DVCS
Having defined and discussed the expression for the nuclear GPDs at small ⇠ (see Eq. (207)), we can now form predictions

for various observables measured in high-energy hard exclusive processes with nuclei (191). (In this review, we consider
only diffractive hard exclusive processes.) The cleanest ways to access GPDs is via DVCS; below we focus on unpolarized
coherent nuclear DVCS, � ⇤ + A ! � + A, see Fig. 81.

At the photon level, the � ⇤ + A ! � + A cross section reads, see, e.g., [231]:

d�DVCS

dt
= ⇡↵2

emx
2(1 � ⇠ 2)

Q 4
p
1 + ✏2

|ADVCS(⇠ , t,Q 2)|2, (209)

where ↵em is the fine-structure constant; ✏2 = 4x2Bm
2
N/Q 2; ADVCS is the DVCS amplitude (more precisely, it is the so-called

Compton form factor). At high energies (small Bjorken x and x�), ADVCS is predominantly imaginary. At the leading order
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Fig. 82. Coherent Bethe–Heitler (BH) process with nuclei.

Table 6

The lepton and hadron beam energies and the corresponding
p
s that correspond to the BH cross section presented in Figs. 83 and 84.

El (GeV) EN (GeV) in 208Pb
p
s (GeV) EN (GeV) in 40Ca

p
s (GeV) EN (GeV) free nucleon

p
s (GeV)

11 24 32 30 36 60 51
11 100 66 125 74 250 105
5 100 44 125 50 250 71

20 100 90 125 100 250 141

in the strong coupling constant ↵s (the handbag approximation), the imaginary part of ADVCS is given in terms of the quark
nuclear GPDs at the x� = x+ = ⇠ cross-over line,

=mADVCS(⇠ , t,Q 2) = �⇡
X

q
e2q

h
Hq

A(⇠ , ⇠ , t,Q 2) + Hq̄
A(⇠ , ⇠ , t,Q 2)

i
, (210)

where eq are the quark charges; Hq
A(⇠ , ⇠ , t,Q 2) are given by Eq. (207). Note that Eq. (210) involves the q + q̄ singlet

combination of the quark GPDs.
The DVCS process interferes and competes with the purely electromagnetic Bethe–Heitler (BH) process, see Fig. 82.
The BH cross section at the photon level can be written in the following form [231]:

d�BH

dt
= ⇡↵2

em

4Q 2t(1 + ✏)5/2(1 � y � y2/2)

Z 2⇡

0

d�
2⇡

1
P1(�)P2(�)

|ABH(⇠ , t,Q 2, �)|2, (211)

where y = (q · PA)/(k · PA) = Q 2/(xs) is the fractional energy loss of the incoming lepton with momentum k (q
is the momentum of the virtual photon, PA is the momentum of the incoming nucleus, s is the total invariant energy
squared); � is the angle between the lepton and hadron scattering planes; P1(�) and P2(�) are proportional to the lepton
propagators; |ABH(x, t,Q 2)|2 is the BH amplitude squared. The expressions for P1,2(�) and |ABH(x, t,Q 2)|2 can be found
in Refs. [231,232]. Note that |ABH(x, t,Q 2)|2 is proportional to the nuclear electric form factor squared, |FA(t)|2, and the
nucleus charge squared, Z2.

Note that at high energies (small Bjorken x), the � ⇤+A ! � +A amplitude is predominantly imaginary. The contribution
of the interference between the DVCS and BH amplitudes is proportional to the real part of the DVCS amplitude, sizable and
concentrated at small t . However, after the integration over �, the interference term essentially disappears and, thus, can
be safely neglected.

Integrating the differential cross sections in Eqs. (209) and (211) over t , one obtains the corresponding t-integrated cross
sections:

�DVCS =
Z tmin

tmax

dt
d�DVCS

dt
,

�BH =
Z tmin

tmax

dt
d�BH

dt
, (212)

where tmin ⇡ �x2m2
N (the exact expression can be found in [231]); tmax = �1 GeV2 (in practice, one can take |tmax| much

smaller for heavy nuclei, e.g., ⇡ �0.1 GeV2 for 208Pb.)
Fig. 83 presents our calculations for the t-integrated DVCS (solid curves) and BH (dotted curves) cross sections as a

function of x at fixed Q 2 = Q 2
0 = 4 GeV2. The left panel corresponds to 40Ca; the right panel corresponds to 208Pb. Note that

at the given large scale along the y-axis, models FGS10_H and FGS10_L give indistinguishable predictions.
The BH cross section explicitly depends on the energy of the process through the variable y. In Fig. 83, the four values

of the BH cross section correspond to the values of y, y = Q 2/(xs), that correspond to the energy settings presented in
Table 6. These energies of the lepton and hadron beam are the discussed energy settings of a future Electron–Ion Collider.
The rightmost dotted curve corresponds to the lowest

p
s; the leftmost dotted curve corresponds to the largest

p
s. The

dotted curves extend from large x down to the smallest possible x defined by the condition that y � 0.95.

The strong amplitude of deeply virtual Compton scattering (DVCS) competes with the 
electromagnetic Bethe-Heitler (BH) amplitude:
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Fig. 85. The DVCS (solid curves) and Bethe–Heitler (dotted curves) cross sections, see Eqs. (209) and (211), as functions of |t| atQ 2
0 = 4 GeV2 and x = 10�3

and x = 5 ⇥ 10�3. The upper panels corresponds to 40Ca; the lower panels corresponds to 208Pb.

Fig. 86. The DVCS beam-spin asymmetry at � = 90°, ALU(� = 90°), as a function of |t| at fixed Q 2
0 = 4 GeV2 and x = 10�3. The solid curves in the left

and right panels correspond to 40Ca and 208Pb, respectively. For comparison, ALU(� = 90°) for the free proton is given by the dot-dashed curve.

the interference between the DVCS and BH amplitudes and, thus, use the large and well known BH amplitude to amplify the
generally smaller DVCS amplitude.

One example is the beam-spin asymmetry, ALU, measuredwith the longitudinally polarized lepton beam and unpolarized
nuclear target. In the leading twist approximation, ALU for a spinless nuclear target reads [182]:

ALU(�) = � 8K(2 � y)ZFA(t)=mADVCS(⇠ , t,Q 2)
1
x |ABH|2 + xtP1(�)P2(�)

Q 2 4(1 � y + y2/2)|=mADVCS|2
sin�, (213)

whereK / p
tmin � t is the kinematic factor [231]; Z is the nuclear charge; FA(t) is the nuclear electric form factor;=mADVCS

is given by Eq. (210); � is the angle between the lepton and hadron scattering planes. The overall minus sign corresponds
to the negatively charged lepton beam. To consistently work to the leading twist accuracy, one should use only the leading
twist contributions to P1(�), P2(�) and |ABH|2. However, in the considered kinematics, Q 2 = 4 GeV2, x = 10�3 and small
t , the higher twist effects are either absent (at � = 90°) or numerically insignificant. Therefore, in the evaluation of ALU, we
use the standard expressions for P1(�), P2(�) and |ABH|2 [231,232].

Fig. 86 presents our predictions for ALU(� = 90°) as a function of |t| at fixed Q 2
0 = 4 GeV2 and x = 10�3. The solid curves

correspond to 40Ca (left panel) and 208Pb. For comparison, ALU(� = 90°) for the free proton is given by the dot-dashed curve.
As in Fig. 85, the BH contribution to ALU(� = 90°) is evaluated assuming a high energy EIC setting with El = 20 GeV and
EN = 125 GeV (for 40Ca) and EN = 100 GeV (for 208Pb).

Our predictions for ALU(� = 90°) for nuclei are rather remarkable. The sole reason for the dramatic oscillations of
ALU(� = 90°) as a function of |t| is nuclear shadowing that shifts the t behavior of the DVCS amplitude relative to the
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Fig. 85. The DVCS (solid curves) and Bethe–Heitler (dotted curves) cross sections, see Eqs. (209) and (211), as functions of |t| atQ 2
0 = 4 GeV2 and x = 10�3

and x = 5 ⇥ 10�3. The upper panels corresponds to 40Ca; the lower panels corresponds to 208Pb.

Fig. 86. The DVCS beam-spin asymmetry at � = 90°, ALU(� = 90°), as a function of |t| at fixed Q 2
0 = 4 GeV2 and x = 10�3. The solid curves in the left

and right panels correspond to 40Ca and 208Pb, respectively. For comparison, ALU(� = 90°) for the free proton is given by the dot-dashed curve.

the interference between the DVCS and BH amplitudes and, thus, use the large and well known BH amplitude to amplify the
generally smaller DVCS amplitude.

One example is the beam-spin asymmetry, ALU, measuredwith the longitudinally polarized lepton beam and unpolarized
nuclear target. In the leading twist approximation, ALU for a spinless nuclear target reads [182]:

ALU(�) = � 8K(2 � y)ZFA(t)=mADVCS(⇠ , t,Q 2)
1
x |ABH|2 + xtP1(�)P2(�)

Q 2 4(1 � y + y2/2)|=mADVCS|2
sin�, (213)

whereK / p
tmin � t is the kinematic factor [231]; Z is the nuclear charge; FA(t) is the nuclear electric form factor;=mADVCS

is given by Eq. (210); � is the angle between the lepton and hadron scattering planes. The overall minus sign corresponds
to the negatively charged lepton beam. To consistently work to the leading twist accuracy, one should use only the leading
twist contributions to P1(�), P2(�) and |ABH|2. However, in the considered kinematics, Q 2 = 4 GeV2, x = 10�3 and small
t , the higher twist effects are either absent (at � = 90°) or numerically insignificant. Therefore, in the evaluation of ALU, we
use the standard expressions for P1(�), P2(�) and |ABH|2 [231,232].

Fig. 86 presents our predictions for ALU(� = 90°) as a function of |t| at fixed Q 2
0 = 4 GeV2 and x = 10�3. The solid curves

correspond to 40Ca (left panel) and 208Pb. For comparison, ALU(� = 90°) for the free proton is given by the dot-dashed curve.
As in Fig. 85, the BH contribution to ALU(� = 90°) is evaluated assuming a high energy EIC setting with El = 20 GeV and
EN = 125 GeV (for 40Ca) and EN = 100 GeV (for 208Pb).

Our predictions for ALU(� = 90°) for nuclei are rather remarkable. The sole reason for the dramatic oscillations of
ALU(� = 90°) as a function of |t| is nuclear shadowing that shifts the t behavior of the DVCS amplitude relative to the

Q2=4 GeV2

DVCS
BH
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ALU(�) =
�!� � ��
�!� + �� / sin�

HA(⇠, ⇠, t)

FA(t)

Predictions for DVCS observables (2)

 The oscillations are due to nuclear shadowing.

• One can extract separately the imaginary and real parts of the DVCS 
amplitude through interference with the BH amplitude.

• Beam-spin asymmetry=polarized lepton beam, unpolarized target 

DVCS asymmetries

Beam-spin asymmetry: pol. beam, unpol.target

One extracts separately real and imaginary parts of DVCS amplitude through 
the interference between DVCS and BH amplitudes

Oscillations are due to shadowing;
 position of nodes measures the strength
 of shadowing
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Fig. 85. The DVCS (solid curves) and Bethe–Heitler (dotted curves) cross sections, see Eqs. (209) and (211), as functions of |t| atQ 2
0 = 4 GeV2 and x = 10�3

and x = 5 ⇥ 10�3. The upper panels corresponds to 40Ca; the lower panels corresponds to 208Pb.

Fig. 86. The DVCS beam-spin asymmetry at � = 90°, ALU(� = 90°), as a function of |t| at fixed Q 2
0 = 4 GeV2 and x = 10�3. The solid curves in the left

and right panels correspond to 40Ca and 208Pb, respectively. For comparison, ALU(� = 90°) for the free proton is given by the dot-dashed curve.

the interference between the DVCS and BH amplitudes and, thus, use the large and well known BH amplitude to amplify the
generally smaller DVCS amplitude.

One example is the beam-spin asymmetry, ALU, measuredwith the longitudinally polarized lepton beam and unpolarized
nuclear target. In the leading twist approximation, ALU for a spinless nuclear target reads [182]:

ALU(�) = � 8K(2 � y)ZFA(t)=mADVCS(⇠ , t,Q 2)
1
x |ABH|2 + xtP1(�)P2(�)

Q 2 4(1 � y + y2/2)|=mADVCS|2
sin�, (213)

whereK / p
tmin � t is the kinematic factor [231]; Z is the nuclear charge; FA(t) is the nuclear electric form factor;=mADVCS

is given by Eq. (210); � is the angle between the lepton and hadron scattering planes. The overall minus sign corresponds
to the negatively charged lepton beam. To consistently work to the leading twist accuracy, one should use only the leading
twist contributions to P1(�), P2(�) and |ABH|2. However, in the considered kinematics, Q 2 = 4 GeV2, x = 10�3 and small
t , the higher twist effects are either absent (at � = 90°) or numerically insignificant. Therefore, in the evaluation of ALU, we
use the standard expressions for P1(�), P2(�) and |ABH|2 [231,232].

Fig. 86 presents our predictions for ALU(� = 90°) as a function of |t| at fixed Q 2
0 = 4 GeV2 and x = 10�3. The solid curves

correspond to 40Ca (left panel) and 208Pb. For comparison, ALU(� = 90°) for the free proton is given by the dot-dashed curve.
As in Fig. 85, the BH contribution to ALU(� = 90°) is evaluated assuming a high energy EIC setting with El = 20 GeV and
EN = 125 GeV (for 40Ca) and EN = 100 GeV (for 208Pb).

Our predictions for ALU(� = 90°) for nuclei are rather remarkable. The sole reason for the dramatic oscillations of
ALU(� = 90°) as a function of |t| is nuclear shadowing that shifts the t behavior of the DVCS amplitude relative to the
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Nuclear diffractive structure functions
The leading twist theory of nuclear shadowing also
predicts shadowing for nuclear diffractive structure functions: 

2

Author's personal copy
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Fig. 75. The Q 2 dependence of the f D(3)
j/A (�,Q 2, xP)/[Af D(3)

j/N (�,Q 2, xP)] ratio as a function of � at fixed xP = 10�3 for 208Pb.

Fig. 76. Predictions for the ratio of the nuclear to nucleon diffractive structure functions, FD(3)
2A /(AFD(3)

2N ), at Q 2
0 = 4 GeV2.

in the interval 0.6  FD(3)
2A /(AFD(3)

2N )  0.7 (FGS10_H) and 0.25  FD(3)
2A /(AFD(3)

2N )  0.35 (FGS10_L), while the prediction
of [27] is that FD(3)

2A /(AFD(3)
2N ) rather rapidly changes from 0.6 to 1.2 between � = 0 and � = 0.3 and further grows and

becomes approximately 1.4 as � approaches unity.
Turning to the xP dependence of F

D(3)
2A /(AFD(3)

2N ), the two lower panels of Fig. 76 are to be compared to Fig. 11 of Ref. [27]. For
xP  0.01, the two approaches predict the similar shape of FD(3)

2A /(AFD(3)
2N ) as a function of xP. For 40Ca and model FGS_L, the

predictions of the two approaches are also close in the absolute values. At the same time, the trend of the A dependence
is opposite: our leading twist approach predicts that FD(3)

2A /(AFD(3)
2N ) for 40Ca is slightly larger than that for 208Pb, while

FD(3)
2A /(AFD(3)

2N ) for 208Pb is noticeably larger than that for 40Ca in Ref. [27]. Also, we predict smaller values of FD(3)
2A /(AFD(3)

2N )

for 208Pb compared to the curves in Fig. 11 of Ref. [27]. While the xP > 0.01 region is not shown in Ref. [27], we predict a
dramatic decrease of FD(3)

2A /(AFD(3)
2N ) for xP > 0.01 as a consequence of the decrease of the coherence length in this region

(see the discussion above).
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FIG. 7. (Color online) Ratio F D
2A/AF D

2p as a function of β for Ca,
Sn, and Au nuclei for Q2 = 5 GeV2 and xP = 10−3. Results are for
the nonbreakup case in the IPsat model (thick lines) and the bCGC
model (thin lines).

qq̄g component vanishes, as can be seen, e.g., from Eq. (13).
This leads to a nuclear suppression of the diffractive structure
function in the small β region, where the qq̄g component
dominates. The net result of the different contributions is that
FD

2A, for a large range in β, is close to AFD
2p.

In Fig. 7, we plot the total ratio as a function of β for
different nuclei in the nonbreakup case. As expected from
our prior discussion, one sees a strong enhancement with A
for larger β and, likewise, a stronger suppression with A at
very small values of β. A comparison of the breakup versus
nonbreakup cross sections can be seen in Fig. 8 for the ratio
of diffractive cross sections as a function of Q2. The results in
Fig. 8 for the ratio of diffractive structure functions indicate
that the diffractive cross section in nuclei decrease more slowly
for large Q2 than in the proton.

In Figs. 9–11, we show the xP dependence of the nuclear
modifications. For a fixed Q2 = 5 Gev2, the nuclear enhance-
ment of the qq̄ components becomes smaller at smaller xP.
This can easily be understood as an analogous effect to the
Q2 dependence plotted in Fig. 8: increasing xP for a fixed Q2

increases Q2/Q2
s (xP) and has the same effect as increasing

Q2 at a fixed xP. In Fig. 10, we compare the xP dependence
in the IPsat and bCGC models. As was already observed in
Ref. [19], the experimental signature for the different evolution
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FIG. 9. (Color online) Ratios F D
2A

x
/AF D

2p

x for different compo-
nents of the diffractive structure function plotted as a function of xP.
The components are evaluated at β = 0.1 for qq̄g, β = 0.5 for T ,

and β = 0.9 for L. Results are in the IPsat model for Au nuclei, both
breakup and nonbreakup cases, for Q2 = 5 Gev2.

dynamics in the models in eA scattering is mainly in the
different xP dependence in the nuclear modification factor.
The results presented in Fig. 10 confirm this, although the
effect is perhaps smaller than in the shadowing of the inclusive
cross section. In Fig. 11, we compare, in the IPsat model, the
nuclear modifications to FD

T,qq̄ at β = 0.5 for Ca, Sn, and Au
nuclei. One can see that the nonbreakup curves are much more
sensitive to the nuclear species than the breakup ones.

In Fig. 12, the dependence of the longitudinal and transverse
components of the diffractive structure function on nuclear size
is shown for the breakup and nonbreakup cases. In the breakup
case, one sees a very weak A dependence. In the coherent
nonbreakup case, one notes that the diffractive structure
function first decreases up to atomic numbers A ∼ 10, before
beginning to rise. As noted in Ref. [19], this is due to the
typical scattering amplitude for small nuclei actually being
smaller than for a proton because of the diluteness of the
nucleus. This leads to a suppression of coherent diffraction.
The breakup case, on the other hand, can only be enhanced in
nuclei. For gold nuclei, the cross sections in the nonbreakup
case are about 15% lower than in the breakup case.
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FIG. 8. (Color online) Ratios F D
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x at xP = 10−3 for different components of the diffractive structure function plotted as a function
of Q2. The components are evaluated where they are dominant: at β = 0.1 for qq̄g,β = 0.5 for T , and β = 0.9 for L. Results are in the IPsat
model for both breakup and nonbreakup cases. (a) Ca nuclei; (b) Au nuclei.
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FIG. 10. (Color online) Ratios F D
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the IPsat and bCGC models as a function of xP, for the nonbreakup
case. The components are evaluated at β = 0.1 for qq̄g, β = 0.5 for
T , and β = 0.9 for L.

Because of the different nuclear modifications in inclusive
and diffractive scattering, the fraction of diffractive events
in an experiment depends on the detailed kinematics and
experimental coverage. Thus it is not straightforward to give
a very precise general estimate for σD/σtot that would be
observed in a generic high-energy eA collider. A general order
of magnitude argument would be as follows. For moderate
values of Q2 and large nuclei, we expect a nuclear shadowing
of the inclusive structure function by a factor of ∼0.8 [19].
A typical nuclear enhancement of diffraction (at moderate
values of β >∼ 0.2) is a factor of ∼1.2 (see, e.g., Fig. 7).
Combining these, we expect σD/σtot to be increased by a factor
of 1.2/0.8 = 1.5 compared to that for the proton. Thus from a
typical fraction of 15% in the ep system, we expect σD/σtot to
go up to 20%–25% at an eA collider.

VI. COMPARISONS AND CONCLUSIONS

Finally we shall briefly compare our results with some other
recent literature on diffraction in eA scattering. Several aspects
of the treatment of nuclear diffraction here were discussed
previously in the works of Nikolaev, Zakharov, and Zoller
[26] and of Frankfurt and Strikman [27]; these works may
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FIG. 11. (Color online) F D
T,qq̄,A/AF D

T,qq̄,p at Q2 = 5 Gev2 and
β = 0.5, as a function of xP for Au, Sn, and Ca nuclei in the IPsat
model. Both breakup and nonbreakup cases are shown.
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FIG. 12. (Color online) F D
T,qq̄,A/A at β = 0.5, F D

L,qq̄,A/A at β =
0.9, and F D

qq̄g,A/A at β = 0.1 vs A at Q2 = 5 GeV2, xP = 10−3. Both
breakup and nonbreakup cases are shown.

be consulted for references to earlier works as well. With
regard to these early works, a key difference is the use of
the explicit form of the qq̄g contributions to the diffractive
structure functions given in Eqs. (10) and (12). Furthermore,
we have focused on the predictions of color glass condensate
based models, which had been previously constrained from
fits to HERA data. In this paper, we have made explicit fits of
these models to the HERA diffractive structure function data
as well for the first time.

Turning to relatively more recent works in the literature,
Gotsman et al. [30] use a parametrization of the impact
parameter dependence that is similar to ours to compute the
fraction of diffractive events in the total cross section. They see
a modest enhancement compared to ep scattering, in agreement
with our results. As previously mentioned, they use a different
method to calculate the qq̄g contribution, but their results
(see, for example, Fig. 7 in Ref. [30]) seem to point toward
its relative suppression in nuclei, in qualitative agreement
with ours. On the other hand, the energy dependence seems
much stronger than our results indicate. Since the results of
Ref. [30] are not presented in the form of diffractive structure
functions (in particular, the β dependence is not calculated),
a more detailed comparison is difficult. In Ref. [32], Levin
and Lublinsky start from a Glauber-like parametrization very
similar to our Eq. (25), but end up with a saturation scale
depending on the nuclear size as Q2

s ∼ A0.6 for moderately
small values of x ∼ 10−3, which naturally leads to a much
stronger A dependence of σD/σtot than our results.

In the work of Frankfurt et al. [28,29,67], the nuclear
diffractive structure functions are modeled starting from
leading twist diffractive parton distributions in the proton.
Although the terminology and theoretical framework are
somewhat different, some comparisons can still be made. They
find that FD

2A/A is suppressed compared to FD
2p, as a function

of Q2, both at small β = 0.1 (in agreement with our result)
and in the transverse qq̄ dominated region β = 0.5 (which
disagrees with our findings); this can be seen explicitly by
comparing Fig. 5 in Ref. [67] and our Fig. 8.

In Goncalves et al. [35,68,69], compute nuclear diffractive
structure functions using the GBW framework [8], albeit
with the dipole cross section of Ref. [21]. They extend the
calculation to nuclei using a simple A1/3 scaling of the
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  Predictions are similar in shape and for some cases in magnitude ➞ not the best 
diffractive observable to distinguish between non-saturation and saturation!

parton distributions xq(x,Q2) and xg(x,Q2) are changing in this x-range rather slowly
as x−λ(Q2), with λ(Q2) varying between 0.2 and 0.4. The only other potentially significant
effect is the change of the fraction of the momentum of the nucleus carried by the gluons.
It is usually determined based on the application of Eq. (155) and is close to ∼ 0.5. An
account of the photons results in its reduction by −2λγ(A), i.e., by about 3% for heavy
nuclei. Only half of this reduction is accounted for by the rescaling in Eq. (159). The rest
may somewhat reduce the enhancement of the gluon ratio at x ∼ 0.1 (antishadowing)
which follows from the application of the momentum sum rule. However, as we pointed
out in Sec. 5.1.4, our estimates of the modification of the gluon PDF for these x have
rather large uncertainties.

6 Final states in DIS with nuclei at small x

In Sec. 5 we demonstrated that the existence of leading twist diffraction in DIS leads to
the significant suppression of the nuclear PDFs at small x. In this section, we explore
consequences of the leading twist shadowing phenomenon for the final states produced in
the small x processes induced by hard probes. In particular, we consider the following three
characteristics of the final states: diffraction, spectra of leading particles, and fluctuations
of multiplicity at central rapidities.

6.1 Nuclear diffractive structure functions and diffractive parton distribution functions

6.1.1 Coherent diffraction

Let us consider diffractive DIS with nuclei, γ∗A → XA′, which is characterized by the
presence of a rapidity gap between the products of the photon dissociation, X , and the
final nuclear state A′. We first address the case of the coherent scattering when the
nucleus remains intact, A′ = A, see Fig. 67. Coherent scattering is readily amenable to
the theoretical methods which were successful in the case of inclusive eA scattering and
is also easier to detect experimentally in collider experiments (see the discussion in the
end of this subsection).

Xγ∗

A A

Fig. 67. Coherent diffractive DIS with nuclei.
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Ultraperipheral pp, pA and AA collisions at the LHC

2 The nuclear gluon distributions at small x in UPC at the
LHC

In a typical nucleus-nucleus collision, e.g., at RHIC or at the LHC, the nuclei collide head-on, interact
strongly, break up and produce a multi-particle final state containing nuclear debris, protons, neutrons,
and pions. However, there are rare situations when the nuclei pass each other at large impact parameters,
i.e., in the transverse plane, the distance between the two nuclei (the impact parameter b) is larger then
the sum of the nuclei radii, b > RA +RB, see the left side of Fig. 1. In this case, the short-range strong
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Figure 1: Left. The sketch of an ultra-peripheral nucleon-nucleus collision when the nuclei pass each other at
the large impact parameter b > RA+RB and interact via the field of their equivalent quasi-real photons. Right.
The flux of equivalent photons, kdNγ/dk, as a function of k for Pb-Pb collisions at the LHC (solid curve) and
RHIC (dotted curve). The flux is calculated in the rest frame of the target nucleus.

forces can be neglected and the interaction between the two nuclei is mediated by the electromagnetic
field in the form of equivalent quasi-real photons emitted by fast moving nuclei (charged ions). This
phenomenon is well-known in QED and is called the method of equivalent photons [16]. The energy
spectrum of the photons emitted by a fast moving nucleus (ion) with the charge Z at the transverse
distance b from the center of the nucleus reads [17]:

dNγ

dk d2b
=

Z2αemk

π2γ2

[
K2

1

(
k|b|
γ

)
+

1

γ2
K2

0

(
k|b|
γ

)]
, (1)

where αem is the fine-structure constant; k is the photon energy; γ is the nucleus Lorentz factor.
The distinctive feature of the UPC is that the photon-emitting nucleus either does not break up or

emits only a few neutrons through Coulomb excitation, leaving a substantial rapidity gap in the same
direction. These conditions can be readily used by identifying UPC in experiments.

The nucleus emits the photons coherently and, as a result, their wave length is larger than the
effective nuclear size. This limits the maximal energy kmax and dnγ/(dkd2b) falls off sharply for k >
kmax ≡ γ/RA. However, boosting the system in the rest frame of one of the nuclei, one simultaneously
boosts k and the spectrum of equivalent photons extends up to kmax = (γ2 − 1)/RA. An example of
this is presented on in Fig. 1 (right side), where we plot the flux of equivalent photons, kdNγ/dk, as a
function of k for Pb-Pb collisions at the LHC (

√
s = 2.75 TeV, γ ≈ 3000) and at RHIC (

√
s = 200 GeV,

γ ≈ 100) in the nuclear target rest frame. The flux kdNγ/dk was obtained by integrating dNγ/(dkd2b)
in Eq. (1) over the large impact parameter b ≥ 2RA.

3

In pp, pA and AA collisions, nuclei can scatter at large impact parameters 
b > RA+RB ― ultraperipheral collisions (UPCs).

In UPCs, ions interact electromagnetically via quasi-
real photons (the method of equivalent photons) , 
E. Fermi (1924)

The photon energy in target rest 
frame is HUGE  

2 The nuclear gluon distributions at small x in UPC at the
LHC

In a typical nucleus-nucleus collision, e.g., at RHIC or at the LHC, the nuclei collide head-on, interact
strongly, break up and produce a multi-particle final state containing nuclear debris, protons, neutrons,
and pions. However, there are rare situations when the nuclei pass each other at large impact parameters,
i.e., in the transverse plane, the distance between the two nuclei (the impact parameter b) is larger then
the sum of the nuclei radii, b > RA +RB, see the left side of Fig. 1. In this case, the short-range strong
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Figure 1: Left. The sketch of an ultra-peripheral nucleon-nucleus collision when the nuclei pass each other at
the large impact parameter b > RA+RB and interact via the field of their equivalent quasi-real photons. Right.
The flux of equivalent photons, kdNγ/dk, as a function of k for Pb-Pb collisions at the LHC (solid curve) and
RHIC (dotted curve). The flux is calculated in the rest frame of the target nucleus.

forces can be neglected and the interaction between the two nuclei is mediated by the electromagnetic
field in the form of equivalent quasi-real photons emitted by fast moving nuclei (charged ions). This
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where αem is the fine-structure constant; k is the photon energy; γ is the nucleus Lorentz factor.
The distinctive feature of the UPC is that the photon-emitting nucleus either does not break up or

emits only a few neutrons through Coulomb excitation, leaving a substantial rapidity gap in the same
direction. These conditions can be readily used by identifying UPC in experiments.

The nucleus emits the photons coherently and, as a result, their wave length is larger than the
effective nuclear size. This limits the maximal energy kmax and dnγ/(dkd2b) falls off sharply for k >
kmax ≡ γ/RA. However, boosting the system in the rest frame of one of the nuclei, one simultaneously
boosts k and the spectrum of equivalent photons extends up to kmax = (γ2 − 1)/RA. An example of
this is presented on in Fig. 1 (right side), where we plot the flux of equivalent photons, kdNγ/dk, as a
function of k for Pb-Pb collisions at the LHC (

√
s = 2.75 TeV, γ ≈ 3000) and at RHIC (
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s = 200 GeV,

γ ≈ 100) in the nuclear target rest frame. The flux kdNγ/dk was obtained by integrating dNγ/(dkd2b)
in Eq. (1) over the large impact parameter b ≥ 2RA.
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Spectrum of equivalent photons of Pb

☞ UPCs allow one to study 𝜸A collisions at 

photon energies 10 times larger than at HERA.

A. Baltz et al., The Physics of Ultraperipheral Collisions at the LHC, Phys. Rept. 480 (2008) 1
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As one can see from Fig. 1, the spectrum of equivalent photons extends up to kmax = 500 TeV =
5×105 GeV, which is ten times larger than the energies achieved in photon-proton scattering at HERA.
This opens an opportunity to study very high-energy photon-nucleus physics at unprecedentedly high
energies.

Below we discuss three classes of processes in UPC at the LHC that can be used to study the poorly
known gluon distribution in nuclei at small x, see Fig. 2. In this processes, one of the nuclei (nucleus
B) serves as a photon source and the other nucleus (nucleus A) is a target. Graph a corresponds to
inclusive photoproduction of two jets with large transverse momenta (it can also be a pair of heavy
quarks); these processes access the usual gluon distribution in nuclei. Graph b corresponds to less
inclusive process, namely, to diffractive productions of two jets. (In such a process, the nucleus recoils
intact or is only slightly excited and there is a rapidity gap between the diffractively produced final
state X and the final nucleus and also between X and the two jets.) The process in graph b accesses
the diffractive gluon distribution in nuclei. Finally, graph c corresponds to the fully exclusive coherent
photoproduction of heavy vector mesons of nuclei, which probes the generalized gluon distribution in
nuclei. It is important to note that while generalized parton distributions are quite different from the
usual PDFs, at high energies (small Bjorken x), they can be related. In particular, small-x generalized
PDFs can be unambiguously expressed in terms of the impact parameter dependent usual PDFs. Below
we consider these processes in detail.

B
B

B
B

A A

A

X

X

jet 1 jet 1

jet 2 jet2

rapidity gap

(a) (b)

B
B

A
A

J/ψ,Υ

(c)

Figure 2: Three classes of processes that can be used to study the gluon distributions in nuclei at small x in
UPC: (a) inclusive photoproduction of two jets with large transverse momenta gives an access to the usual gluon
PDF; (b) diffractive productions of two jets gives an access to the diffractive gluon PDF; (c) exclusive coherent
photoproduction of heavy vector mesons probes the generalized gluon distribution (the impact parameter
dependent usual gluon PDF).

2.1 The usual gluon distribution in nuclei from inclusive photoproduction
of jets

As we explain in the Introduction, while the gluon distribution in nuclei at small x, x < 0.01, cannot be
determined from QCD fits to the available data and at present is quite uncertain, it can be predicted
using the leading twist theory of nuclear shadowing. An example of it is presented in Fig. 2.1 where we
plot the ratio of the gluon distribution in 208Pb over that in the free proton, gA(x,Q2

0)/[AgN(x,Q
2
0)],

as a function of x at Q2
0 = 4 GeV2 (labeled FGS10). Also, for comparison, we show the results of the

extraction of the gluon distribution in 208Pb from the global fits: EPS09 [12] and HKN07 [11].

4

Hard real photon-nucleus processes can be used to study various gluon distributions 
in nuclei: 

Inclusive photoproduction of 
jets (large pT or HQ jets):
usual gluon distribution.

Diffractive photoproduction of 
jets (large pT or HQ jets):
diffractive gluon distribution. 

Exclusive VM production: 
generalized gluon distribution 
(impact parameter dependent)
  

  
Before EIC и LHeC (and analysis of pA data at the LHC) 

UPCs is the only place where the nuclear gluon distribution can be 
constrained in the near future. 

Ultraperipheral pp, pA and AA collisions at the LHC (2)
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The recent ALICE measurement of exclusive J/𝜓 photoproduction in Pb-Pb UPCs 
gives a first direct evidence of large gluon shadowing at x=10-3. 

Photon flux of Pb
(well-known)

  

Exclusive J/ψ photoproduction in Pb-Pb UPCs at LHC 

is the J/𝜓 rapidity

• Using the experimental                                  and calculated              , we obtain:

• These values can be converted into the nuclear suppression factor S: 

E. Abbas et al.  [ALICE Collaboration], arXiv:1305.1467
B.Abelev et al. [ALICE Collaboration], arXiv:1209.3715 

VG, E. Kryshen, M. Strikman, M. Zhalov, PLB (2013) 
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S(W�p = 92.4GeV) = 0.61+0.05
�0.04

S(W�p = 19.6GeV) = 0.74+0.11
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Known from HERA and LHCb

  

Exclusive J/ψ photoproduction in Pb-Pb UPCs at LHC (2) 

Calculated using nuclear form factor

• Model-independent determination of S:

• Modulo fine details, S is equal to the suppression due to the nuclear gluon shadowing.  

• The denominator is the                          cross section in the impulse approximation:

of the experimental results is shown in Fig. 1. The 10 GeV < Wγp < 25 GeV range of energies
corresponding to the ALICE muon spectrometer acceptance in the measurement of J/ψ production
in PbPb UPCs at 2.76 TeV was studied in the old proton-target experiments at FNAL and CERN.
Statistics in those experiments was very low resulting in large experimental errors. The forward J/ψ
photoproduction cross section at higher energies was measured by the H1 and ZEUS collaborations
at HERA. As can be seen in Fig. 1, the cross sections measured by these two experiments do not
agree well, with the most recent H1 measurement being systematically higher over the entire energy
range.

The data in Fig. 1 was fitted using the following pQCD motivated expression [14]:

dσγp→J/ψp(Wγp, t = 0)

dt
= C0

[

1−
(MJ/ψ +mN)2

W 2
γp

]1.5[ W 2
γp

1002 GeV2

]δ

, (15)

The values of the free parameters C0 and δ were determined from the fit, resulting in C0 =
342± 8 nb/GeV2 and δ = 0.40± 0.01. Then, the corresponding values of the forward cross section
are:

dσγp→J/ψp(19.6 GeV, t = 0)

dt
= 86.9± 1.8 nb/GeV2 ,

dσγp→J/ψp(92.4 GeV, t = 0)

dt
= 319.8± 7.1 nb/GeV2 . (16)
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Figure 1: The fit to the forward J/ψ photoproduction cross section data [8].

To calculate ΦA(tmin) and to estimate its uncertainty, we evaluate ΦA(tmin) using three dif-
ferent nuclear form factors. In particular, we used the analytic parametrization of FPb(t) from
StarLight [15], which is widely used in analyses of experimental data as a UPC generator. We

5

VG, E. Kryshen, M. Strikman, M. Zhalov, PLB (2013) 

Btw, the data shows no signs of saturation 
(slowing down of W-dependence)!
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�V A(W�p) = 2

Z
d2~b


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⇢
��(W�p)

2

TA(
~b)

��

d��A!J/ A(W�p, t = 0)

dt

= C(µ2)


xGA(x, µ

2)

�2
! S(W ) =

GA(x,Q2)
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• Large gluon shadowing in the leading twist approach agrees with large suppression factor S:

• StarLight MC and dipole model overestimate S: 

which leads to the small nuclear suppression factor SA(Wγp). Indeed, the prediction for SPb(Wγp)
calculated using Eqs. (21) and (24) with the parameters from StarLight[15], which is shown by the
red dashed line in Fig. 2, significantly overestimates the data points that we model-independently
extracted from the ALICE data.

It is of particular interest to compare the nuclear suppression found from the analysis of the
ALICE data to the corresponding predictions of perturbative QCD. At high energies and small
transverse momenta of J/ψ (Wγp ! MJ/ψ ! pt), in the leading order pQCD, the cross section of
coherent J/ψ photoproduction on the proton is proportional to the proton gluon density Gp(x, µ2)
squared [19, 20]:

dσγp→J/ψp(Wγp, t = 0)

dt
= C(µ2)

[

xGp(x, µ
2)
]2

, (25)

where x = M2
J/ψ/W

2
γp is the fraction of the proton plus-momentum carried by the gluons; µ2 is the

hard scale. In the approximation that the Fermi motion of the quarks in charmonium is neglected,
the prefactor C(µ2) = M3

J/ψΓeeπ3αs
2(µ2)/(48αemµ8), where Γee is the width of the J/ψ electronic

decay.
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Figure 2: Comparison of the ALICE suppression factors with the estimates in the Glauber model with the color
dipole cross section and in the Starlight approach.

It is worth noting that the accuracy of the LO pQCD calculations of the J/ψ photoproduction
cross section is still a subject of discussions, see, e.g., [21, 22, 23]. In particular, the value of the
hard scale µ2 in the the gluon density is not fixed reliably. There are also some uncertainties in
estimates of the skewness of the gluon distributions, relativistic effects in the charmonium wave
function, and higher order corrections. Some of the corrections increase the cross section, others
– suppress it. However, there is a general consent that these effects mainly influence the absolute
value of the cross section but not its energy dependence. The total uncertainty of the LO pQCD
predictions is estimated in [21, 22] to be about 30% or less, while [23] suggests a larger uncertainty.
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Figure 4. The same as in figure 3, but with the LO pQCD predictions evaluated at µ2 = 3 GeV2.

Figures 3 and 4 present the suppression factor S(Wγp) for Lead as a function of x =

M2
J/ψ/W

2
γp. The two ALICE data points (see the discussion above) are compared with the

LO pQCD predictions given by eq. (2.11) at µ2 = 2.4 GeV2 (figure 3) and at µ2 = 3 GeV2

(figure 4). In the two upper panels and in the lower left one, the factors of R(x, µ2) and

κA/N are calculated in the framework of the leading twist approximation (LTA) consisting

in the combination of the leading twist theory of nuclear shadowing [30] with the given

(MNRT07, CTEQ6L1, CTEQ6L, MRST04 and NNPDF) gluon distributions of the free

nucleon. In each case, we show the band of predictions which corresponds to the intrinsic

uncertainty of the leading twist theory of nuclear shadowing1. Note also that since the

predictions with the CTEQ6L1 and CTEQ6L and with the MRST04 and NNPDF gluon

distributions are rather close, we show only the representative examples of CTEQ6L1 and

NNPDF.

In the lower right panels, S(Wγp) is calculated using the leading order EPS09 param-

eterization of nuclear PDFs [31] extracted from the global QCD fit to available data; at

the leading order, EPS09 should be coupled with the CTEQ6L1 gluon distribution of the

free proton. Note that we use EPS09 as a typical representative example—predictions for

1The bands shown in figures 3 and 4 represent the theoretical uncertainty of the leading twist theory

of nuclear shadowing [30] associated with the ambiguity in the magnitude of the contribution describing

the interaction of the virtual photon with three and more nucleons of the nucleus. The upper and lower

boundaries of the bands correspond to the lower and higher limits on shadowing.
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κA/N are calculated in the framework of the leading twist approximation (LTA) consisting

in the combination of the leading twist theory of nuclear shadowing [30] with the given

(MNRT07, CTEQ6L1, CTEQ6L, MRST04 and NNPDF) gluon distributions of the free

nucleon. In each case, we show the band of predictions which corresponds to the intrinsic

uncertainty of the leading twist theory of nuclear shadowing1. Note also that since the

predictions with the CTEQ6L1 and CTEQ6L and with the MRST04 and NNPDF gluon

distributions are rather close, we show only the representative examples of CTEQ6L1 and

NNPDF.

In the lower right panels, S(Wγp) is calculated using the leading order EPS09 param-

eterization of nuclear PDFs [31] extracted from the global QCD fit to available data; at

the leading order, EPS09 should be coupled with the CTEQ6L1 gluon distribution of the

free proton. Note that we use EPS09 as a typical representative example—predictions for

1The bands shown in figures 3 and 4 represent the theoretical uncertainty of the leading twist theory

of nuclear shadowing [30] associated with the ambiguity in the magnitude of the contribution describing

the interaction of the virtual photon with three and more nucleons of the nucleus. The upper and lower

boundaries of the bands correspond to the lower and higher limits on shadowing.
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Nuclear gluon distribution at EIC

• Example of inclusion of EIC pseudo-data in global fits:

POETIC IV - Finland 2013: macl@bnl.gov
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Work in progress… (H. Paukkunen)
• Take the generated Pseudo-data and include it in a 

global fit
➡ Only 20x100 and 5x100 included in these plots

• More data (e.g. charm) will constrain this further
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M. Lamont, POETIC IV, 
Jyvaskyla, Sep. 2-5, 2013

1.2.2 The Nucleus, a QCD Laboratory

The nucleus is a QCD “molecule”, with a complex structure corresponding to bound states
of nucleons. Understanding the formation of nuclei in QCD is an ultimate long-term goal of
nuclear physics. With its wide kinematic reach, as shown in Fig. 1.5 (Left), the capability
to probe a variety of nuclei in both inclusive and semi-inclusive DIS measurements, the
EIC will be the first experimental facility capable of exploring the internal 3-dimensional
sea quark and gluon structure of a fast-moving nucleus. Furthermore, the nucleus itself is
an unprecedented QCD laboratory for discovering the collective behavior of gluonic matter
at an unprecedented occupation number of gluons, and for studying the propagation of
fast-moving color charges in a nuclear medium.

1

10

10-3

103

10-2

102

10-1 110-4

x

Q
2
 (

G
e

V
2
)

0.1

EIC
 √s =

 90 G
eV, 0

.01 ≤ y 
≤ 0.95

EIC
 √s =

 45 G
eV, 0

.01 ≤ y 
≤ 0.95

Measurements with A ≥ 56 (Fe):

 eA/μA DIS (E-139, E-665, EMC, NMC)

 νA DIS (CCFR, CDHSW, CHORUS, NuTeV)

 DY (E772, E866)

perturbative

non-perturbative

geom
etric scaling

ln x

non-perturbative region

ln
 Q

2

Q
2
s(x)

saturation

JIMWLK
BK

DGLAP

BFKL

αs <<  1

αs ~ 1

Figure 1.5: Left: The range in the square of the transferred momentum by the electron to the
nucleus, Q2, versus the parton momentum fraction x accessible to the EIC in e-A collisions at
two di↵erent center-of-mass energies, compared with the existing data. Right: The schematic
probe resolution vs. energy landscape, indicating regions of non-perturbative and perturbative
QCD, including in the latter, low to high saturated parton density, and the transition region
between them.

QCD at Extreme Parton Densities
In QCD, the large soft-gluon density enables
the non-linear process of gluon-gluon recom-
bination to limit the density growth. Such a
QCD self-regulation mechanism necessarily
generates a dynamic scale from the interac-
tion of high density massless gluons, known
as the saturation scale, Q

s

, at which gluon
splitting and recombination reach a balance.
At this scale, the density of gluons is ex-
pected to saturate, producing new and uni-
versal properties of hadronic matter. The
saturation scale Q

s

separates the condensed
and saturated soft gluonic matter from the
dilute, but confined, quarks and gluons in a
hadron, as shown in Fig. 1.5 (Right).

The existence of such a state of satu-
rated, soft gluon matter, often referred to as
the Color Glass Condensate (CGC), is a di-
rect consequence of gluon self-interactions in
QCD. It has been conjectured that the CGC
of QCD has universal properties common to
nucleons and all nuclei, which could be sys-
tematically computed if the dynamic satu-
ration scale Q

s

is su�ciently large. How-
ever, such a semi-hard Q

s

is di�cult to
reach unambiguously in electron-proton scat-
tering without a multi-TeV proton beam.
Heavy ion beams at the EIC could provide
precocious access to the saturation regime
and the properties of the CGC because the
virtual photon in forward lepton scattering

7

• Main goals:
- determine gluon distributions in nuclei as a

       function of х and b 
- onset of high density regime

• Methods:
- wide kinematic x-Q2 coverage 
- measurement of FL(x,Q2) и F2c(x,Q2)
- measurement of jets 

A. Accardi et al., “Electron-Ion Collider: 
The Next QCD Frontier” , arXiv: 1212.1701 
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 The picture of high-energy scattering in the target rest frame allows for intuitive
explanations of such phenomena as color transparency, inelastic diffraction and
nuclear shadowing.  

 The phenomenon of nuclear shadowing in the sea quark and gluon parton 
distributions plays major role in various reactions (inclusive, diffractive, exclusive)
to be studied in collider kinematics at EIC.
  
 The leading twist theory of nuclear shadowing makes definite predictions for 
various (usual, diffractive, impact parameter dependent) nuclear PDFs and 
predicts large gluon shadowing.

 The first direct evidence of large nuclear gluon shadowing can be deduced from 
the recent ALICE measurement of exclusive J/𝜓 photoproduction in Pb-Pb UPCs. 

Conclusions
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