

Color Propagation in Nuclei JLAB12, EIC, RHIC, LHC

Abhijit Majumder Wayne State University

QCD Frontier workshop, JLAB Oct. 21-22, 2013

outline

- A universal formalism for Jets in DIS and Heavy-Ion collisions
- Jets as a window on high Q^{2} structure of nucleon and QGP
- Change in sub-structure with T and μ
- Monte-Carlo "improvements"
- Connections with Lattice.

The base set-up

$$
\begin{aligned}
d \sigma & =\int d x G(x) d \hat{\sigma}(\hat{J} \\
\tilde{J} & \left.=J_{\text {vac }}+\int d L f\left(\tilde{q} \ldots, L, Q^{2}\right) \times J_{\text {vac }}\right)
\end{aligned}
$$

Same factorized set up in heavy-ion collisions

$$
\begin{gathered}
d \sigma=\int d x_{a} d x_{b} G\left(x_{a}\right) G\left(x_{b}\right) d \hat{\sigma} \tilde{J} \\
\tilde{J}=J_{v a c}+\int d L f\left(\hat{q} \ldots, L, Q^{2}\right) \times J_{v a c}
\end{gathered}
$$

We will set up the formalism in A-DIS and then extend it to HIC

Proton

$$
P=\left(P^{+}, P^{-}, \mathbf{P}_{\perp}\right)=\left(\frac{Q}{x_{B} \sqrt{2}}, 0, \mathbf{0}\right)
$$

in coming quark

$$
p \equiv\left(p^{+}, p^{-}, p_{\perp}\right)=\left(\frac{Q}{\sqrt{2}}, \frac{k_{\perp}^{2}}{2 p^{+}}, \mathbf{k}_{\perp}\right)
$$

photon

$$
q \equiv\left(q^{+}, q^{-}, \mathbf{0}\right)=\left(\frac{Q}{\sqrt{2}},-\frac{Q}{\sqrt{2}}, \mathbf{0}\right)
$$

outgoing quark $\quad p_{f}=\left(0, q^{-}, \mathbf{k}_{\perp}\right)$

How is a single hard parton modified

Struck quark has,
energy $\sim Q$ and virtuality $\sim \lambda Q$
hence, gluons have

$$
k_{\perp} \sim \lambda Q, \quad k^{+} \sim \lambda^{2} Q
$$

could also have $k^{-} \sim \lambda Q$

Calculate in negative light-cone gauge $A^{-}=0$

So what do we get from resumming ?

$$
p^{+}=\frac{p^{0}+p_{z}}{\sqrt{2}}
$$

a) transverse broadening

$$
p^{-}=\frac{p^{0}-p_{z}}{\sqrt{2}}
$$

Assuming independent scattering of nucleons gives a diff. equation These cannot be soft, they must have transverse momentum, Glauber gluons.

$$
\frac{\partial f\left(p_{\perp}, t\right)}{\partial t}=\nabla_{p_{\perp}} \cdot D \cdot \nabla_{p_{\perp}} f\left(p_{\perp}, t\right)
$$

$$
\hat{q}=\frac{p_{\perp}^{2}}{t}=\frac{2 \pi^{2} \alpha_{s} C_{R}}{N_{c}^{2}-1} \int d \tilde{t}\left\langle F^{\mu \alpha}(\tilde{t}) v_{\alpha} F_{\mu}^{\beta}(0) v_{\beta}\right\rangle
$$

A. Majumder and B. Muller, Phys. Rev. C 77, 054903 (2008)

b) Longitudinal drag and diffusion

A close to on shell
$\begin{aligned} & \text { parton has a 3-D } \\ & \text { distribution }\end{aligned} \quad p^{+}=\frac{p_{\perp}^{2}}{2 p^{-}}$
$f(\vec{p}) \equiv \delta^{2}\left(p_{\perp}^{2}\right) \delta\left(p^{-}-q^{-}+k^{-}\right)$
Using the same analysis, we get a drag. and diff. term
$\frac{\partial f\left(p^{-}, L^{-}\right)}{\partial L^{-}}=c_{1} \frac{\partial f}{\partial p^{-}}+c_{2} \frac{\partial^{2} f}{\partial^{2} l^{-}}$

c_{1} is $\mathrm{dE} / \mathrm{dL}$,
A. Majumder, Phys. Rev. C 80, 031902 (2009)

There are a bunch of medium properties which modify the parton and frag. func. $\hat{q}, \hat{e}=d E / d L$ and $\hat{f}=d N / d L$

$$
D\left(\frac{\vec{p}_{h}}{\left|\vec{p}+\vec{k}_{\perp}\right|}, m_{J}^{2}\right)
$$

$$
\hat{q}=\frac{\left\langle p_{T}^{2}\right\rangle_{L}}{L}
$$

Transverse momemtum diffusion rate

$$
D\left[\frac{\left.p_{A}-m^{3}\right)}{p-k} \hat{c}=\frac{\langle\Delta E\rangle_{L}}{L}\right.
$$

Elastic energy loss rate also diffusion rate e_{2}

Gluon radiation is sensitive to all these transport coefficients
And a bunch of off diagonal
and higher order transport coefficients

The single gluon emission kernel

Calculate 1 gluon emission with quark \& gluon N-scattering with transverse broadening and elastic loss built in Finally solved analytically, in large Q^{2} limit.
A. Majumder Phys. Rev. D 85, 014023 (2012)

Need to repeat the kernel

What is the relation between subsequent radiations? In the large Q^{2} we can argue that there should be ordering of $\left.\right|_{T}$. if $\hat{q} L<Q^{2}$
then $\frac{d Q^{2}}{Q^{2}}\left[1+c_{1} \frac{\hat{q} L}{Q^{2}}\right] \leq \frac{d Q^{2}}{Q^{2}}\left[1+c_{1}\right]$
However, at lower Q^{2}, possible anti-ordering
Coherence effects and broadening in medium-induced QCD radiation off a massive $\mathrm{q} q$ antenna
Néstor Armesto, Hao Ma, Yacine Mehtar-Tani, Carlos A. Salgado, Konrad Tywoniuk JHEP 1201 (2012) 109

Analytical calculations always have approximations

$$
\begin{aligned}
& \frac{\partial D_{q}^{h}\left(z, \mu^{2}\right)}{\partial \log \left(\mu^{2}\right)}=\frac{\alpha_{s}}{2 \pi} \int_{z}^{1} \frac{d y}{y} P_{q \rightarrow i}(y) D_{i}^{h}\left(\frac{z}{y}, \mu^{2}\right) \\
& + \\
& \frac{\left.\partial D_{q}^{h^{2}}\left(z, M^{2}, q^{-}\right)\right|_{\zeta_{i}} ^{\zeta_{f}}}{\partial \log \left(M^{2}\right)}=\frac{\alpha_{s}}{2 \pi} \int_{z}^{1} \frac{d y}{y} \frac{\tilde{P}_{q \rightarrow i}(y)}{M^{2}} \int_{\zeta_{t}}^{\zeta_{f}} d \zeta \frac{2 \pi \alpha_{s}}{N_{c}} \\
& \times \rho_{g}(\zeta)\left[2-2 \cos \left\{\frac{M^{2}\left(\zeta-\zeta_{i}\right)}{2 q^{-} y(1-y)}\right\}\right] \\
& \times\left. D_{q}^{h^{1}}\left(\frac{z}{y}, M^{2}, q^{-} y\right)\right|_{\zeta} ^{\zeta_{f}} \\
& \text { Thus you need } \\
& \text { a grid } \\
& \text { in } z, q^{-} \text {, and } \zeta \\
& \text { Really hard } \\
& \text { numerically, so } \\
& \text { far grid in } \mathrm{z}, \mathrm{q}^{-} \text {, } \\
& \text { and in } \mathrm{z}, \zeta
\end{aligned}
$$

To go beyond this would require a MC Evt. Gen.

A DGLAP formalism requires an upper scale and a lower scale

Upper scale is $P_{T}{ }^{2}$, same as in vacuum
Lower scale: virtuality of parton on exit

Natural choice
$Q^{2}{ }_{\text {min }}=E / L$
Realistically, should be done for each path
In reality: average kernel over many paths
and calculate a mean distance based on the maximum length that the jet can travel in the representative brick

Can explain suppressed yield of hadrons in DIS

Data from HERMES at DESY
Three different nuclei
one $\hat{q}=0.1 \mathrm{GeV}^{2} / \mathrm{fm}$
Fit one data point in Ne everything else is prediction
$Q^{2}=3 \mathrm{GeV}^{2}, V=16-20 \mathrm{GeV}$
A. Majumder
2009
$z=E_{h} / E_{Y}$

The V and Q^{2} dependence

Many approximations made!

$$
\left.\left.\tilde{D}\left(z, Q^{2}, \nu\right)\right|_{(ᄃ)} ^{\zeta_{f}} \rightarrow \tilde{D}\left(z, Q^{2}, \nu\right)\right|_{\left(c_{7}\right)} ^{\zeta_{f}}
$$

Dihadrons, yet another test of the formalism

Works in DIS with no additional parameters

Works in HIC with no additional parameters

Requires the same non-pert. input a dihadron fragmentation func.

A. Majumder, E. Wang and X.-N. Wang,

Phys. Rev. Lett. 99, 152301 (2007)

Medium in HIC described by viscous fluid dynamics

Medium evolves hydro-dynamically as the jet moves through it
Fit the q for the initial T in the hydro in central coll.

versus reaction plane

A. Majumder and C. Shen, Phys. Rev. Lett. 109, 202301 (2012)

Versus reaction plane, versus energy

Reasonable agreement with data
Several improvements can be made from this point
A. Majumder and C. Shen, Phys. Rev. Lett. 109, 202301 (2012)

Better hydro, better jet quenching: $T_{A B}$ for jets matched with hydro initial conditions

Completely consistent predictions for Dihadrons

A. Majumder, et. al., nucl-th/0412061

These are parameter free calculations The near side involves a new non-perturbative object the dihadron fragmentation function

From factorized analytical approaches to event generators

From factorized analytical approaches to event

 generatorsLooks at full jet, so less sensitive to fragmentation

From factorized analytical approaches to event generators

Looks at full jet, so less sensitive to fragmentation

In reality, have to include a detailed model of fragmentation

From factorized analytical approaches to event generators

Looks at full jet, so less sensitive to fragmentation

In reality, have to include a detailed model of fragmentation so not as well defined as few particle observables

From factorized analytical approaches to event generators

Looks at full jet, so less sensitive to fragmentation

In reality, have to include a detailed model of fragmentation so not as well defined as few particle observables

Always an issue with separating the jet from the medium

From factorized analytical approaches to event generators

Looks at full jet, so less sensitive to fragmentation

In reality, have to include a detailed model of fragmentation so not as well defined as few particle observables

Always an issue with separating the jet from the medium

Usual background subtraction, includes jet medium interaction as part of jet

From factorized analytical approaches to event generators

Looks at full jet, so less sensitive to fragmentation

In reality, have to include a detailed model of fragmentation so not as well defined as few particle observables

Always an issue with separating the jet from the medium

Usual background subtraction, includes jet medium interaction as part of jet

Rigorously calculating this requires more non-perturbative transport coefficients

Main problem: Introducing distance into a DGLAP shower
No space-time in the usual Monte-Carlo showers

$$
\bar{z}=\frac{z+z^{\prime}}{2}
$$

$$
\delta z=z-z^{\prime}
$$

z and z^{\prime} position of emission in amplitude and c.c.

$$
\int_{0}^{\infty} d^{4} \bar{z} \exp [i(\delta q) \bar{z}] \quad \int d^{4} \delta z \exp \left[i \delta z\left(l+l_{q}-q\right)\right]
$$

δq is the uncertainty in q,
We obtain a Wigner transform like formalism with δq^{+}and z^{-}

Observables 1. AJ

If you ignore $R_{A A}$ this is not hard

Higher Twist in box

MARTINI without $R_{A A}$

Observables 1. AJ

If you ignore $R_{A A}$ this is not hard

T. Renk, Phys. Rev. C 86, 061901 (2012)

Observable 2: Fragmentation function!

loss of virtuality
lost energy ->

Observable 3. Appearance of lost Energy

Momentum balance in the event is carried by low momentum particles at large angles to jets

$$
p_{\mathrm{T}}^{\|}=\sum_{\text {Tracks }}-p_{\mathrm{T}}^{\text {Track }} \cos \left(\phi_{\text {Track }}-\phi_{\text {Leading Jet }}\right)
$$

To understand this need to know how jets deposit energy into a medium

G.-Y. Qin, A. Majumder, H. Song and U. Heinz, Phys. Rev. Lett. 103, 152303 (2009)

Rate of energy deposition greater at LHC large part of the jet escapes the medium

Medium dissipates in time, so early energy loss is important

To understand this need to know how jets deposit energy into a medium

G.-Y. Qin, A. Majumder, H. Song and U. Heinz, Phys. Rev. Lett. 103, 152303 (2009)

Rate of energy deposition greater at LHC large part of the jet escapes the medium

Medium dissipates in time, so early energy loss is important

Getting ahead of the experiment

Calculating \hat{q} on the lattice

A Majumder, Phys Rev C 87034905
Future calculations will have T dependent \hat{q} input from lattice Difficult inside a nucleus!

Conclusions

- Factorization paradigm allows direct comparison between cold and hot matter using JETs
- At few particle level, very good agreement with theory for hard jets
- precision study at EIC will yield more info on transport coefficients
- New physics probed by full jets, not yet completely under control
- May lead to new insights at EIC

Take the extreme limit of a nucleus, $A \rightarrow$ inf. and nucleons are very small compared to nucleus

All four gluons from one nucleon: prop. to L
Two in one nucleon, two in another: prop. to L^{2}
2 n gluon expection ---> n 2 gluon expectation

