A Portable Accelerator Control Toolkit

William A. Watson ITI, Thomas Jefferson National Accelerator Facility

Abstract
In recent years, the expense of creating good control soft-

ware has led to a number of collaborative efforts among .

laboratories to share this cost. The EPICS collaboration is
a particularly successful example of this trend. More
recently another collaborative effort has addressed the
need for sophisticated high level software, including
model driven accelerator controls. This work builds upon
the CDEV (Common DEVice) software framework, which
provides a generic abstraction of a control system, and
maps that abstraction onto a number of site-specific con-
trol systems including EPICS, the SLAC control system,
CERN/PS and others. In principle, it is now possible to
create portable accelerator control applications which have
no knowledge of the underlying and site-specific control
system. Applications based on CDEV now provide a
growing suite of tools for accelerator operations, including
general purpose displays, an on-line accelerator model,
beamline steering, machine status displays incorporating
both hardware and model information (such as beam posi-
tions overlaid with beta functions) and more. A survey of
CDEV compatible portable applications will be presented,
as well as plans for future development.

1 INTRODUCTION

In almost any book or journal on software development
one will find reference to the explosion in the quantity of
software development, and the cost and difficulty in devel-
oping necessary software in a timely fashion. A typical
tule of thumb for accelerators is that the control system
costs 10% of the total project, with half of that going to
software, In addition, as much as 5% to 10% of operating
manpower may go towards ongoing software improve-
ments.

In a decade of declining research budgets, this expense
has driven an increasing interest in software sharing within
many areas of the research community, including the
accelerator controls cominunity.

1.1 EPICS

One example of a successful collaboration to develop
accelerator control software is EPICS (Experimental Phys-
ics and Industrial Control System). This software, whose
history is described in another paper at this conference [1],
is now in use at several accelerator sites including the
Advanced Photon Source at Argonne, Thomas Jefferson
National Accelerator Facility (Jefferson Lab), the B fac-
tory upgrades at SLAC and KEK, and several smaller
machines.

EPICS provides a framework for developing low level
device controls, including hardware interfacing and low
level control algorithm development. Many device drivers

are shared within the collaboration, as are modular soft-
ware components for creating control processes. Programs
within an EPICS system are tied together by a network
infrastructure (the channel access library) based upon
reading, writing, and monitoring changes in named vari-
ables. A named variable can refer to a hardware 170 point,
or a variable within an algorithm

The toolkit contains a number of utility programs
which plug into this software bus, including synoptic dis-
plays with interactive editors, a save/restore utility,
archiving (data logging) and data browsing programs, and
an alarm interface. Many commercial and freeware pack-
ages have also been interfaced to this bus via a callable
library (e.g. a spreadsheet and the tcl/tk toolkit).

Including astronomy sites and large physics detectors,
the EPICS collaboration includes over a hundred users and
application developers, and represents a notable software
sharing effort. For the most part, this sharing is limited to
those who use EPICS as the core of their control system.

1.2 50SH

SOSH (for Software Sharing) is a name given to a series of
workshops on the general topic of software sharing for
accelerators and large physics detectors. The original
meetings were held in conjunction with the International
Conference on Accelerator and Large Experimental Phys-
ics Control Systems (ICALEPCS).

The current thrust of these workshops is to (1) develop
a framework within which shareable applications can
be built, (2) develop shareable utility applications (e.g.,
display or manipulate named control system quantities),
and (3) develop accelerator or detector specific control
applications. The framework includes a common (abstract)
interface to the local control system, with common stan-
dards for names of classes of devices and their attributes
(or a way of aliasing these to a common set).

At the “Workshop on Software Sharing” following
ICALEPCS '93 in Berlin, 19 invited participants agreed in
a joint statement that “there is no fundamental reason
(from operation and machine points of view) why ... the
primary functions in the draft list could not be imple-
mented by common generic (configurable) software and/
or using appropriate common software tool kits™. [2]

This list of functions included 13 topics related to the
application environment including user interface develop-
ment, on-line help, a sequencer, data logging, archiving,
and system configuration, This is the area well covered in
a portable way (within EPICS) by the EPICS toolkit.

What is more remarkable is that the participants stated
that accelerator applications were equally shareable: mag-
net cycling {and super cycles), orbit measurement and cor-
rection, tune measurement and comection, chromaticity
measurement and correction, RF gymnastics, machine

JLAB-ACC-97-09

simulations, injection, matching, and extraction. To date,
these sorts of applications have seen only limited portabil-
ity, yet represent an even larger software development
effort than all of EPICS at major accelerator labs like
CERN, FNAL, and SLAC.

2 DISTRIBUTED SOFTWARE TECHNOLOGY

2.1 A Software Bus

If these applications are to be shareable among a large
number of laboratories running different (mostly custom)
control systems, there needs to be a well defined common
interface through which they can connect. This interface is
often referred to as a “software bus”. Just as hardware
modules pass data over a backplane bus, so too software
modules (programs) pass information over the software
bus.
In May of 1995, CERN hosted a workshop titled “A
Softwarebus Common to Accelerators and Large Experi-
mental Physics Control Systems™. Twenty-five partici-
pants agreed that (1) applications “above the bus” (host
side vs. hardware side) held the most promise and benefit
for sharing, and (2) CDEY, a C++ framework developed at
Jefferson Lab, [3] should be investigated as the framework
through which these applications could access the control
system. Two additional workshops in the previous 2 years
have continued to focus upon CDEV as an enabling tech-
nology for portable accelerator control applications.
There are two ways in which a software bus can be
defined, and both are used in practice. In one, the network
protocol is defined, including how resources are located
(discovered) on the network, what types of messages
between programs are supported, and how these messages
are formatted on the network. In the second way, an appli-
cation programming interface (API) is defined, which
specifies a set of routines to be called for communicating
with other programs. The protocol on the network is not
defined, and in fact multiple protocols may be used. The
second technique is equivalent to defining a virtual accel-
erator, as presented by Kanaya at ICALEPCS ‘93, [4]
There are many software buses of each type in exist-
ence today, and it is difficult to choose one to be a stan-
dard; in fact the choice is somewhat a matter of
preference. The choice of CDEV as a potential standard
interface was driven by these requirements of the bus:
* ability to connect to legacy control systems
® high performance, with fully asynchronous behavior
» support for a high level view of the control system,
dealing with named accelerator devices (magnet,
bpm) each with multiple attributes (field, x-position,
beam current) instead of a view consisting of hard-
ware addresses or low level control points

* support for object oriented programming, and in par-
ticular the C++ language

* support for rich messaging (complex queries with
complex replies)

2.2 CDEV

CDEV (Common DEVice) provides an interface (API) to
a virtual control system with a simple flavor -— the system
consists of a set of named devices to which messages may
be sent. The client program has no knowledge of the
device’s software or hardware implementation (location,

~ control system type), and only knows (or discovers at run

time) the list of messages to which the device responds.
CDEV is implemented as a C++ framework that pro-
vides a standard interface between an application and one
or more underlying control packages or systems. It serves
as an adaptor, or middleware, between a portable applica-
tion and a local control system. In addition, it provides a
number of features not provided by many control systems.

Application
CDEYV APl > l
system layer — CDEV
Z
. X other
service layer —-bl EPICS | CLIP | CORBA | control
systems

Figure 1: CDEV multi-service architecture.

CDEY does not specify which networking protocol is
used between client and server, and can in fact support
multiple protocols simultaneously (Figure 1). When used
with the EPICS channel access protocol, CDEV can locate
bundreds of device/attribute pairs per second, and receive
thousands of value changes per second. The overhead of
using CDEYV instead of the native EPICS API is negligible
and well offset by the additional functionality provided,
even if portability is not a desired goal.

When used with another custom TCP/IP based proto-
col (CLIP) developed at Jefferson Lab, CDEV can deal
with complex queries to (for example) a model server
returning arrays of two-dimensional transfer matrices
between specified devices. The client application remains
unaware of which protocol is involved.

Additional interfaces to other control systems may be
added to CDEV with a modest amount of programming,
ranging from a couple of weeks of learning and coding for
a simple system, to a few months for a complex system.
SLAC has interfaced CDEV to its control system on VAX/
VMS computers, and CERN/PS has done likewise for an
IBM/AIX system. This is an extremely small amount of
effort to support portable software.

2.3 Alternatives to CDEV

One possible alternative to CDEV which was considered
{and continues to be evaluated) is CORBA, the Common
Object Request Broker Architecture, which defines stan-
dards for object-oriented distributed-programming com-
munication mechanisms. [5] Implementations of CORBA

are available from multiple vendors on all major plat-
forms, and the latest version of the standard addresses
interoperability among vendors.

While CORBA is well accepted in the marketplace,
there are several problems with making it the software bus
for control systems, and performance is one. CORBA is

about 10 times slower at locating resources on a network -

than can be achieved with custom protocols — primarily
because the location services deal with only a single
resource at a time. In contrast, EPICS and CLIP buffer
requesits for name resolution, achieving much higher
throughput for large, complex applications such as interac-
tive displays containing a thousand or more variables.
Another CORBA difficulty is the complexity of the
API for dynamic invocation (talking to remote objects
whose interface is not compiled into the current programy).
This dynamic binding capability (discussed further in the
next section) is a key feature of many utilities.
Nevertheless, CORBA continues to be of interest. One
avenue often discussed is to use CDEV over CORBA, and
to use CORBA only to locate servers and to transport mes-
sages. In this case one would use a custom (accelerator
device) resource locator and CDEV as the API and higher
level framework. CDEV could easily support this simulta-
neously with the existing direct support of other protocols.

3 UTILITY APPLICATIONS

3.1 Name Based I/O

There are a large number of useful controls applications
which deal only with named values, and are not accelera-
tor specific. These include operator displays (graphical —
a meter showing magnet current, or text based — a list of
all magnet setpoints and currents), data archiving (carrent
in the magnet for the last year), or save and restore (of the
magnet setpoint). These control system values are refer-
enced by a single name (e.g. magnet7-setpoint) or through
a pair of names (magnet7, setpoint) corresponding to
device name and attribute name.

Because of the proven usefulness of the EPICS utility
programs (which are name based), one development activ-
ity has been to port those tools to CDEV, allowing them to
be used with non-EPICS servers and protocols,

3.2 Converting EPICS 1ools

Two EPICS applications [6] have already been converted
from calling the EPICS channe} access library to making
CDEY calls.

stripTool Strip chart graphical application, with 8 colored
pens. Interactively choose variables, including wild-
cards. Save / restore of display definitions.

alh Alarm handler; monitors the alarm (error) sta-
tus of the referenced values and summarizes the errors
in a tree hierarchy. Indicates alarm through color,

blink, and beep.

In addition, the following EPICS tool is in the process of

conversion; others will be converted as time allows.

dm Display manager; one of the two synoptic dis-
play programs in EPICS, with the ability to display
values as text, color (of a graphic), or through widgets
such as meters and push buttons. Menus and push but-
tons support executing scripts or bringing up addi-
tional displays.

3.3 New CDEY tools

Several new utilities have been developed or are currently
being developed within the CDEV framework:

xact X-windows Automated Correlation Toolkit.
Modeled after the SLAC correlation package, this
utility can step 1 or 2 variables, and measure hundreds
of other variables at each step. As part of each step or
measurement, additional actions may be performed
including time delay, wait for a value to settle, or
invoke a script. Plans include automated min/max
optimization of one parameter (done routinely at
SLAC with their software).

zplot Another tool modeled after a SLAC utility, this
program displays attributes of devices (such as bdl,
the integral field in a magnet) as a function of position
along the beam (2) in the machine. While this appears
to be specific to accelerators, the attribute represent-
ing position could easily be replaced by any other col-
lating parameter.

Archive data browser. Originally developed to
directly read EPICS archive data files, this program is
being converted to a CDEV based client/server archi-
tecture. StripTool will also be modified to initialize
immediately with archived data from the server, and
to allow scrolling backwards in time. Additional fea-
tures in the new archive system are planned. [7]
cmlog A distributed error logging system. Includes a
logging daemon for each host (Unix and VxWorks), a
database server, client logger and browser libraries, a
Motif browser, a tcl browser, and (soon) a Java
browser. Logging client library supports filtering
(suppression of repeating errors). Browser supports
interactive suppression of uninteresting errors.

xarr

4 CDEV COMPONENTS

CDEV is (1) a standard AP for communicating with
devices, (2) a C++ framework implementing this API, (3)
a Java package implementing a (subset of) this API, and
(4) a set of applications and libraries useful in building dis-
tributed systems. This section will briefly review the high-
lights of each, emphasizing recent developments.

4.1 C++ Library

The mainstay of CDEV is a C++ class library for develop-
ing both applications and adaptors to additional control
systems. The library includes:

* directory services: ook up devices by name or by
type, including wildcard matching; discover at run
time supported attributes and messages; get type for
given device

® asynchronous messaging: high throughput, buffered
1/0; callback mechanism, time-outs

» string and composite self describing binary data mes- -

sages, with support for multiple architectures (byte
swapping)

* [/O operation grouping and synchronization

¢ collections, for operations on vectors of devices, with
support for passing the device array intact to the
underlying control system for higher performance on
some systems

s virtual I/0: use of multiple control systems from a
single calling interface

» support for EPICS, CLIP (plus others at their sites)

® hase class for integrating new control systems

* extensive documentation

4.2 Java Package

The Java package is written in 100% Java, allowing
applets to be written to run inside of commercial web
browsers. [8] It supports the same calls as in C++ for send-
ing messages to devices, with network support for the
CLIP protocol also in 100% Java. The package currently
does not include support for groups or collections.

In addition to the Java-cdev package, there is also (in
beta form) a graphics library for producing animated dis-
plays along the lines of those produced by dm (above).

4.3 telitk

It has been the experience at Jefferson Lab and elsewhere
that the fel scripting language and its ¢k graphics toolkit
provide an extremely productive environment for rapid
prototyping of control applications. [9] Tc! has been inter-
faced to CDEYV, allowing scripts to access the entire con-
trol system and accelerator model at Jefferson Lab.

4.4 Network Components

The latest extensions to CDEYV include a set of network
components useful in building up a large distributed sys-
tem. These components include:

NameServer Supports the mapping from a named
resource to server address and port. A CDEV device
may be implemented as a single resource, or as a set
of resources on different servers. Communication
with the name server is asynchronous and buffered,
locating resources 10 times faster than CORBA.

Gateway Allows multiple applications to connect to
the control system through a single point, producing
only a single connection to any real-time system. Per-
forms protocol conversion from the external protocol
(CLIP) to the site-specific protocol. Currently used to

connect Java applets to the control system. (See Fig-
ure 2.)

Server Shell A skeleton server program which can be
used to build & new CLIP server by writing a single
routine to handle one message. All connection man-
agement and message queueing and routing is han-
dled by the shell, Used to implement the NameServer,
Gateway, and the model server Artemis (described in
the next section).

C++ application
CDEV applet
clip Java CDEV
C++ application Gateway
CDEV CDEV

local | clip local clip

local server shell server shell

server Artemis NameServer

Figure 2: CDEV network components, showing logical
network connections for two protocols, with gateway
connected applets and applications.

5§ ACCELERATOR APPLICATIONS

A certain amount of success has been achieved in the past
in sharing beam optics modeling codes, such as MAD,
DIMAD, PARMELA, and also analysis codes, such as
RESOLVE. These applications are off-line applications
with no connection to a control system, yet do represent a
notable software sharing success.

Sharing of on-line applications is somewhat more diffi-
cult, and has met with only limited success., Much of the
lack of success can be attributed to the lack of a common
interface to the control system.

5.1 Standards or Conventions Needed

The model design codes mentioned above have been suc-
cessful in moving from site to site because they provide
significant capabilities, while enforcing few constraints
upon the users. Each program has a simple naming con-
vention for devices, and for classes of devices, and for
attributes of devices. For example, DIMAD defines a qua-
drupole magnet as something of type “quadrupole” having
characteristics “L” (length), “K1” (strength, in 1/m?), and
“aperture” (radius in meters). Instance names are restricted
to eight significant characters, and everything is case
insensitive.

These are exactly the types of conventions which need
10 be standardized in order to allow portable on-line appli-
cations -- conventions on names of classes of devices, and
conventions upon what capabilities (such as read and write
attributes) these devices support.

5.2 CLASSIC

Among recent attempts to standardize the definitions of l

accelerator objects is the CLASSIC project. [10] CLAS-
SIC is an acronym for Class Library for Accelerator Sys-
tem SImulation and Control. Its goal is to provide:
* a C++ class library for accelerator design, simulation
and operation
* 2 mechanism for C-+ code sharing and standardiza-
tion in the accelerator community, and

¢ a platform to exchange new ideas in code develop-
ment.

The collaboration includes SLAC, CERN, FNAL, DESY,
Jefferson Lab, and the University of Maryland.

CLASSIC includes a standard input file format with
mnemonic type codes for all accelerator elements, mem-
ory structures to represent these beamline components and
composite beam lines, representations of lattice transfer
maps, representations of misalignments, interfaces to algo-
rithms, and an interface to the on-line control system (the
plan is to use CDEV). This is still a work-in-progress, with
the initial software being tested within the framework of a
new version of MAD.

5.3 Unified Accelerator Libraries

UAL {11] is another effort to develop an environment for
portable accelerator control applications. One major thrust
of this effort is to standardize descriptions of accelerator
structures. Unlike the CDEV and CLASSIC projects, UAL
does not standardize upon C++ as the programming lan-
guage, but instead uses the scripting language PERL as the
glue to bind together a set of programs in potentially mul-
tiple languages intoc a cohesive system.

At this point, the UAL project anticipates using
CORBA as the software bus through which applications
will gain access to the control system.

5.4 CDEV Compliant Accelerator Software

In addition to the general purpose utility applications
listed in the previous section, there are a small number of
accelerator optics applications already finished:

Artemis Artemis is an accelerator beam optics server for
simulation and control. [12] It provides first- and sec-
ond-order transport matrices, beam envelop propaga-
tion, and particle ray tracing. It currently uses
DIMAD as a back-end, but is adaptable to other mod-
eling engines. It uses CDEV to obtain current lattice
settings and to service clients.

Atlast Atlast (AuTomated Lock And Steering Toolkit)
is a modular program for beam based energy and orbit

corrections. It uses CDEV to monitor beam position
monitors, obtain model information, and drive actya-
tors. Multiple algorithms are allowed, with support
for SVD and Prosac. [13]

6 SUMMARY

“ Progress has been made in forming a new multi-lab collab-

orative effort in high level accelerator applications devel-
opment. The CDEV framework has been used to support a
diverse set of on-line tools, including modified EPICS
applications, new utilities, and a small number of beam
based applications. Portability of applications between
EPICS and non-EPICS control systems has been demon-
strated.

New developments at Jefferson Lab, SLAC, and other
labs will continue to expand the set of CDEV compliant
applications, and the work of affiliated groups like the
CLASSIC collaboration will further increase the amount
of software runnable at sites supporting a CDEV adaptor.

7 ACKNOWLEDGMENTS

Work supported by the U.S. Department of Energy, con-
tract DE-ACO05-84ER40150.

8 REFERENCES

1] ‘Experence with EPICS in a wide variety of applications’, M.
Kraimer, ANL; M. Clausen, DESY; W. Lupton, KECK; and C.
Watson, Jefferson Lab, these procsedings, PAC *97,

[2] ‘Panel Session on Softwarc Sharing’, ‘About the Saturday Work-
shop’, B. Kuiper, ICALEPC 1993 Proceedings, Nucl. Instr. and
Meth. in Phys. Res. A 352 (1994) 513-515.

[3] ‘An Object-Oriented Class Library for Developing Device Control
Applications’, J, Chen, W. Akers, G. Heyes, D. W, and C. Watson,
ICALEPCS 1995 Proceedings. See also http:/fwww.jlab.orgicdev/.

[4] <Virtnal accelerator and fundamental guidelines towards sharable
software for accelerator control systems', N. Kanaya, ICALEPCS
1993 Proceedings, 497-500.

[5] Re CORBA, see hitp://www.omg.orglomg0Q/wicorbahtm.

{6] Private communication. StripTool converted by C. Lamicu, Jeffer-
son Lab; ath by Janet Anderson, Argonne National Lab.

[7] “Design of a new EPICS archive system’' presented at the Vancou-
ver spring 97 EPICS collaboration meeting by Mati Bickley.

[8] ‘A Java Package for Building Client Applets to Access TINAF
Accelerator Data Across the Intemet’, C. Quach, master’s thesis,
Christopher Newport University, 1997,

[9] ‘Rapid Application Development Using the Tel/Tk Language', J.
van Zeijts, PAC 1995 Proceedings, Vol. 4 p. 2241,

[10] “The Classic Project’, F. C. Iselin, Computationai Accelerator Phys-
ics Proceedings, 1996, 325-330.

[11] *Unified Accelerator Libraries’, N. Malitsky, R. Talman, Computa-
tional Accelerator Physics Proceedings, 1996, 337-342.

[12] “The Use of Artemis with High Level Applications’, B. Bowling,
H. Shoaee, S. Witherspoon, ICALEPCS 1995,

[13] ‘Prosac Algorithm’®, Y. Chao, CAP 96, 319.

