JLAB-ACC-97-17

DESIGN AND IMPLEMENTATION OF A SLOW ORBIT CONTROL PACK-
AGE AT THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY

J. van Zeijts, S. Witherspoon, and W. A. Watson

Thomas Jefferson National Accelerator Facility

Abstract

We describe the design and implementation of a C++
client/server based slow orbit and energy control package
based on the CDEV[1] software control bus. Several client
applications are described and operational experience is
given.

1 INTRODUCTION

The slow orbit control system at Jefferson Lab. was
initially implemented as several Tcl[2] scripting applica-
tions[3, 4]. This was a good interim solution when most
resources needed to be spent on commissioning the low
level control system. To develop more rcbust high level
applications an effort was started to convert the most
demanding applications to C++. The first project com-
pleted was the conversion of the DIMAD[5] based on-line
optics database from Tcl to a C++ client/server frame-
work[6]. That effort included the first application of the
CDEV client/server framework in operations. Next we
started the conversion of the slow orbit/energy control and
auto-steering applications.

2 REQUIREMENTS

The general orbit control package requirements are
summarized in a Software Requiremenls Document[7].
The requirements call for locking beam positions and
energy at a maximum rate of 1Hz. The focus is on exten-
sive exception handling, and particular attention is given to
the determination of misbehaving responders.

3 DESIGN & IMPLEMENTATION

Here we describe the various parts needed to build an
operational lock. The CDEV library has available a robust
and flexible generic client/server framework[8]. We use
this to design a multiple client and multiple server imple-
mentation. External control of the each server is handied
by sending CDEV messages. We describe the design of
each part and its implernentation.

3.1 Lock Server

The Lock Server contains a set of related locks
which are handled by a ‘Lock Manager’ described below.
Each lock can potentially be using a different algorithm.
Multiple named instances of Lock Servers may exist on
the network.

* Lock Manager

The Lock Manager handles the scheduling and interac-
tion of the related locks. The simplest instance is a peri-
odic manager which periodically triggers ecach lock in
series. For steering applications we provide an ‘On
Demand’ manager. Lock to Lock interaction is handled in
more involved managers. We plan to support SLAC type
adaptive handlers[9].

* Type/Algorithms

Multiple lock types are supported. They are mostly
distinguished by the use of different algorithms for locking
and steering the beam. The basic algorithm is Singular
Value Decomposition for calculating the state of the sys-
tem. Standard feedback control state space algorithms are
supported. For demanding applications in orbit steering
we use a special purpose algorithm[10]. The locks can be
configured to any of the applicable types.

3.2 Configuration Server

The configuration of each lock is kept in a Database
server. There is once instance of this server. This database
keeps a set of configurations, where each configuration has
a list of named locks and a lock manager type. Each lock
has a list of responders and actuators and selection infor-
mation, and has an algorithm type.

3.3 Optics Information & Model Server

The response matrices needed for the operation of the
locks are retrieved from a ‘Model’ server. These models
can represent the design optics, or contain measured data.
In the simulated control sysiem environment these models
can produce simulated beam position readings.

3.4 ‘Gold’ Orbits Server

The Gold Orbit Server is the centralized repository for
the ‘gold’ orbits. This is a set of orbits to which the
machine should be steered. Access to this server is needed
by safe/restore clients and by all the steering and feedback
applications. In particular, each lock can be notified when
the gold orbit changes. The server provides ‘xGold’ and
‘yGold® attributes for all beam position monitors. The use
of this server has significantly improved the management
of the operational gold orbit values.

3.5 Error Logging

A centralized clienUserver facility will be used to
report errors[!1]. This facility accepts error messages

from clients distributed throughout the control system.
Query messages and GUT query tools are used to monitor
the state of any one of the systems.

3.6 Alarm Reporting

Alarm reporting will be done using the EPICS alarm
handler program running over CDEV. Operators will hear
an audible alarm when actuators go out of range or a feed-
back loop stops running because of a control system or
hardware alarm.

3.7 Data Logging

The multiple lock servers present data to the outside
world in a form such that standard CDEV data logging
tools can be used. We use the generic StripTool application
and will use the upcoming CDEV archiving standard.

3.8 User Interfaces

Even though the locks can in principle be operated by
sending CDEV commands from the command line, this is
clearly not sufficient for an operational interface. We use
the Tcl/Tk tool box Lo provide lightweight graphics inter-
faces. The Tcl interpreter is dynamically extended with
commands to access arbitrary CDEV devices and send/
receive arbitrary cdevData packets. Asynchronous moni-
toring fits well in the Tc! event model.

4 OPERATIONAL IMPLEMENTATIONS

Here we describe the lock servers which are in use in
operations at JLAB.

4.1 OpsLock Server

This server contains the default set of operational slow
feedback loops. We have 3 slow energy locks and multiple
slow orbil feedback loops, including orbit feedback locks
in front of the experimental hall targets.

4.2 ArcDiagnostics Server

This server runs in calculate only mode and is used to
diagnose energy shift problems throughout the machine. A
momentum deviation is calculated for each of the 9 arcs
and displayed on a strip chart tool.

4.3 OpsSteering Server

This server is configured with beam steering algo-
rithms for the linacs and the arcs.

5 CLIENT IMPLEMENTATIONS

5.1 Operator Control GUI Client

The main operational interface is shown below. Opera-
tors can start/stop a feedback loop and get a status read-
back from both for the lock status and the beam status. All
operational servers can be accessed from this main panel.
An expert panel allows selection/deselection of elements

and changing lock parameters. Multiple instances of these
browsers can be up at the same time and changes are coor-
dinated by the CDEV server monitoring capability.

1 Opsl.ogks .-

Figure 3: Responder Configuration Panel

5.2 Lock Database Configuration Tool

A browser GUI was developed to query and set the
lock database. Persistent changes to the configurations can
be made from this panel.

=

%ﬂckDatabase :

| ArcDiegnostics..;. " .
HEManager - :
[3 Are1Diagnestics
- 3 ArcZDiagnostics’.
63 Arc3Dlagrs
{1 ArcaDiagnos
‘HG ArcSDiagnostic
. 1HEY ArgBRiagnostic
-+ Arc7Diagnostics™:
Ho1 ArcBDlagnostics:
‘€9 ArcOblagnostics -
r—ﬁi.HailADIagnosfdc‘sj .
Ly HallCDiagnostics .

. FC SteerAreS: -
£ SteerAre6: . -
21 SteerAre? .
M2 SteerArc8. - ¢
3 SteerArcs 0
‘L SteerTest ™ |

Figure 4: Lock Database Configuration GUI

5.3 Strip Chart Client

For operational diagnoslics purposes we can use a
standard CDEV tool like the StripTool to display a live
strip chart of parameters calculated by any of the Lock
servers, Here we show the dp/p momentum deviation for 2
arcs in the CEBAF accelerator.

e Mty OF, 57

Figure 5: ArcDiagnostics Strip Chart

6 COMMISSIONING

Before releasing the code in operations it needs to be
tested exhaustively. We take advantage of the CDEV
device/attribute paradigm which gives us the ability to re-
route control system devices to different servers. We build
a ‘fake’ control system server and point the control system
devices to this by a simple change in the routing informa-
tion database. The application code is not changed. All the
exceplion handling can be exercised by manipulating the
fake control system lo tnigger arbitrary exceptions.

7 UPGRADES

The Database server will be backed up by an object-
oriented persistent database. The code for any of the Data-
base clients will need no change when we switch the data-
base server to this. Likewise we can move from the current
gold orbit server, to a persistent database server with no
change in client code.

8 ACKNOWLEDGMENTS

We would like to acknowledge Walt Akers for provid-
ing the code and documentation for the CDEV Generic
Server engine. This work is supported by the U.S. Depart-
ment of Energy, contract DE-ACO05-84ER401350.

9 REFERENCES

[1] W.A. Watson, ‘A Portable Accelerator Control Toolkit’, PAC 1997
Proceedings.

[2] J. K. Ousterhout, *Tc! and the Tk Toolkit’, Addison-Wesley Profes-
sional Computing Series {1994).

[3]). van Zeijts, ‘Rapid Application Development Using the Tcl/Tk
Language’, PAC 1995 Proceedings, Vol 4 p 2241,

[4]). Karnetal., ‘Development of Digital Feedback Systems for Beam
Position and Energy at the Thomas Jefferson National Accelerator
Facility’.

[5] R.Servranckx et.al., DIMAD Manual.

[6] B.Bowling et al, ‘Integrated Gn-Line Modeling at CEBAF, PAC
1993 Proceedings.

[7)} J van Zeijts, ‘Sofiware Requirements for Slow Locks’, lefferson
Lab., internal document.

[8] W. Akers, The CDEV Generic Server, Jefferson Lab. CDEV Docu-
mentation. www jlab.org/cdev/doc_1.5/cdevGenericServer himl

[9] T. Himel, "Requirements and Design Overview for Adaptive Cas-
caded Feedback’. SLAC Preprint, October 1991,

[10} Y. Chao, ‘Prosac Algorithm’, CAP 96, 319.

[11}J. Chen, CMLOG documentation, Jefferson Lab., internal docu-
ment,

