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ABSTRACT

Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge
(nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coher-
ent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious
emittance degradation. In this paper, we study an electron bunch orbiting between two infinite, parallel conducting
plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient ef-
fects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straight
path prior to the bend, are analysed using Liénard-Wiechert fields, and their overall net effect is obtained. The
influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results
for emittance degradation induced by this self-interaction are also presented.

Keywords: coherent synchrotron radiation, space charge, free-electron laser, accelerator physics, Liénard-Wiechert
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1. INTRODUCTION

When a short (mm-length) bunch with high-charge (nC-regime) is injected into magnetic bending systems, coherent
synchrotron radiation (CSR) and space-charge interaction, due to the curvature of beam orbit, set up a wakefield
across the bunch. This beam self-interaction will induce energy spread in the charged particles in the bunch, and
may cause degradation of beam quality via the energy dependence of particle orbits in dispersive regions. Such
possibility is of concern for various transport-lattice designs associated with free-electron lasers (FELs), including,
for example, bunch-compressor chicanes preceding wigglers and recirculation loops associated with energy recovery.
To circumvent this deleterious effect of curvature-induced self-interaction in lattice designs, one needs a thorough
understanding of the phenomenon.

Almost all previous theoretical work on CSR has concerned its steady-state properties. Examples concerning
steady-state CSR in free space include the frequency-domain and time-domain analyses by Schiff! and Derbenev, et
al.,? respectively. Examples concerning steady-state CSR with shielding, i.e., in the presence of conducting walls,
include the frequency-domain analyses by Nodvick and Saxon,® Warnock and Morton,* and Kheifets and Zotter,®
and the time-domain analysis by Murphy, Krinsky, and Gluckstern.® Only recently have transients in finite-length
magnetic bends begun to be considered, the principal example being the time-domain analysis of Saldin, et al.”
concerning the transient interaction of a bunch with itself as it passes from a straight path into a circle in free space.
These investigators showed that both space-charge forces originating from the straight path, and space-charge and
CSR forces originating from the circle, make important contributions to the transient self-interaction.

In this paper, we generalize the theory of transient self-interaction in a magnetic bend by incorporating conducting
walls to introduce shielding of CSR. Working in the time domain, we consider an electron bunch with a rigid-line-
charge Gaussian distribution orbiting in the center plane between two infinite, parallel conducting plates. The bunch
moves from a straight path to a circular orbit and begins radiating. Transient forces arising from source particies on
the straight path (space charge) and on the circle (space charge and CSR) are calculated, and their net effects on
beam energy spread and emittance growth are consequently obtained. For the characterization of the duration and
magnitude of the transient effect, the power loss by a bunch due to this curvature effect is also analysed. All our
results obtained in this paper can be reduced to those of Saldin, et al” in the free-space situation.

The presence of the two plates causes fields radiated from the bunch at an earlier time to bounce from plate to
plate and eventually interact back with the bunch at a later time. The parallel-plate system is equivalent to an array
of image bunches in free space moving simultaneously with the bunch in planes parallel to the plane of beam motion,



with alternating signs of charge, and spaced by the gap width of the two plates. The two systems are equivalent
because they both satisfy the boundary condition at the plates and Maxwell’s equations between the plates. This
allows us to study the shielding of two conducting plates in terms of the interaction of the bunch with fields emitted
by the image bunches.

2. LONGITUDINAL WAKEFIELDS ON THE BUNCH DUE TO
CURVATURE-INDUCED SELF-INTERACTION

We start with the general Hamiltonian formalism for an electron with charge e:

H = c/(P — eAfc)? + m2c? + e®, (1)

where p = P —eA/c = ymv is the particle’s kinetic momentum, in which v is its velocity, 7 is the Lorentz factor; ¢
and A are the scalar and vector electromagnetic potentials, respectively, on the electron arising from the interaction
of an external field and the rest of the charge distribution. Given a rigid-line-charge bunch entering a circle from
a straight path, the rate of change of the kinetic energy for an “observer” electron S, located on the bunch at the
space-time coordinate (r,?), can be derived from the above Hamiltonian using dH/dt = OH/Ot, which yields
d dd 3
mcg-&-‘:—(:E[—Eﬁ“a(@—ﬁ-A)], (2)

where the potentials ® and A on electron S can be derived in terms of the potentials ®o and Ao generated by a
single “source” electron S’ on the bunch:

[®, A](r,t) = /Z[(I)g, Ag)(r,1;8") n(s')ds’ (3)

where n(s') is the line-density of the bunch, with s’ denoting the distance of electron ' from the bunch center, and

(o, Acl(r,tis') = e [a%’—}l)—ﬂ] . Rer—f@R=Rin=R/R) @)

Here 8 = v/c, and the subscript “ret” in Eq. (4) imposes the retardation condition, which accounts for the nonzero
time needed for the field emitted by S’ at retarded space-time (x', ') to reach S at (r,?):

R=c(t—t). (5)

Since the trajectory r'(t) of S’ is prescribed as a function of &, for given &, the retarded space-time of ' is uniquely
determined by Eq. (5). One can also express Eqs. (2) and (4) by way of the longitudinal wakefield £y (r,%) on electron
S, which is on the circular orbit,

mcﬂd—'r = fceEs, Eo(r,t) = ds' Ego(r, 1;8') n(s),
dt —oo (6)
Ego(r, ;) = = [—ﬂ + '(2‘(‘1’0 —B-A )]
AT Be | dt ot ’

where Eyq is the single-particle longitudinal field exerted by 5" on S.

It is shown in Eq. (6) that the single-particle field Ego(x, ¢; s) forms the basis of our wakefield analysis, which in
turn is the foundation for the calculation of energy spread, emittance degradation, and the power loss by the beam
due to its self-interaction. Since the geometric relation between S’ and S incorporated in Ego(r,?;s') depends on
whether the field is generated by §' from the straight path prior to the bend -or from the circular orbit, in what
follows we shall use the indices “(a)” and “(b)” to denote the cases when the source particle S’ at retarded times
¢ is located on the straight path and the circle, respectively. To take into account the interaction of S from image

charges due to the presence of the parallel plates, the source particle $’ is allowed to have an offset z' perpendicular
to the plane of the orbit. This will correspondingly affect the retardation times associated with image charges.



- mmmm— ===
=

Figure 1. Interaction of S’ on S, with S’ on the straight path prior to the bend at the retarded time, and S on the
circular orbit. The plate spacing is h, and the circle has radius p.

2.1. Case (a): $' on straight path at ¢/, § on circle at ¢

As shown in Fig. 1, an observer electron S, at angle 6 on the circle of radius p at time ¢, experiences a force generated
from a source electron ' {which, in Fig. 1, is an image charge) at coordinate r' = (—2',0,2') at time ¢’ (' > 0).
With ¢ = 0 being the moment when the bunch center enters the circle, the trajectories of S and &' are respectively
described by .

S ph =25+ fct (circular path)

S —z' =5 + Pet’ (straight path) ()

In the coordinate system (X, ¥, 2}, depicted in Fig. 1, the vector R from S to S is

(Rz, Ry, R;) = (psin@ + 2', pcosf — p,2'), and R=./RL+ R+ R]. (8)

The interaction from $’ to S obeys the retardation relation in Eq. (5) with R given in Eq. (8). Also, in this coordinate
system, the factor (1 — B - n)R in ihe single-particle potentials given in Eq. (4) can be written as

(I*ﬁn)R—'- \fR?'l"Rﬁ_/Tz (R:j_ = R§+RE; R’a: = R&'_ﬁRl ﬁret =(ﬂ’0:0)) (9)

Notice R, is the distance from 5} to S projected on the k-direction, with S, denoting the position of S at time £
were it to continue executing uniform linear motion at all retarded times ¢’ < ¢. Upon substracting the two formulas
in Eq. (7) and using Eq. (5}, one gets

R. = p(A¢ +8inb ~¥0), (A¢ = As/p, As=s— ) (10)

where A¢ is the angular intra-bunch distance between S and S’ in the bunch frame.

The longitudinal electric field due to single-particle interaction can be obtained from Eq. (6), where the functional
dependence of ® and A for given (8,) on &' is through A¢ in Egs. (9) and (10). This yields

{a)
E® = _58‘;8 . with VX8, As,2) = Vi 4 (@ — B - Ag) P, (11)
where
s . a 1 — cos #) — Ry R’ sin 8/ R}
via) = ple) 6, 00,2 — Y 6,As,2"), with y 8, As,z") = e( 2 . 12
0 b ( )=Vo ( ) o ( ) JRE T BT (12)
and

1~ B%cost
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Figure 2. The field generated by S is a pancake shaped disc associated with its pseudo present location S at time
t, which shines right on the observer electron S when R}, =0 as S enters into the bend.

Here V.® is derived from d®{®/dt in Eq. (6): 8V ®/dAs = d®{ /fedt.

To confirm the validity of the above expressions, we carry out the differentiation in Eq. (11) using Eqs. (12) and
(13), and obtain
YR. co8 8 + | Ry|siné

(a} _
B = (A RZ+ RLYT o
which agrees with the longitudinal component of the following Lienard-Wiechert field on S generated by 5'
n—p3 e nx(n——ﬁ)xﬁ
E = il Ju Al Sl o RATLS
¢ [72(1—ﬁ'n)3R2]ret+ ¢ [ (1_"ﬁn)3R ret (15)

Here, because of the uniform motion of S’ on the straight path, the second term in Eq. (15) vanishes, and the
interaction from S’ to S is solely due to space charge.

From Eq. (14), if YR, » R), we have Egp o 472, a result similar to the inertial space-charge interaction.
However, when R, = 0, we have Ejgo = eyRy sin8/ R3 o . Hence when v 3 1, the space-charge field from S 1o
S is an impulse-like function of Rf. The corresponding physical picture is depicted in Fig. 2 for the interaction of
§' with S in free space, where the electric field at time ¢ generated by S’ at retarded time ¢’ is a pancake-shaped
disc associated with S;,— the psendo present location of §'. For given intra-bunch spacing As, as S enters into the
bend, it moves from the side of the disc to a point when the disc-shaped field shines right on .S when RL.=0,o0r
‘A¢ = 0 —sinf. We will show that in this case the straight path has a non-trivial space-charge effect on the particles
moving in the bend, which is comparable to that of CSR on the circle.

2.2. Case (b): S’ on circle at ¢, S on circle at ¢

The motions of S and S are now described by
S:ph=s+pPct, S :pf =6+8ct. (16)

To obtain the dependence of the lab-frame interaction angle Af = ¢ — ¢’ on the intra-bunch angular spacing
A¢ = As/p of the two causally related particles, we subtract the two equations in Eq. (16), and use the retardation
relation in Eq. (5) to obtain the transcendental equation through which Af is uniquely determined by Ag¢ for given
p and z”:

pAB = pAd + SR, R =+/[2psin(A8/2)]% + 22 (17)

In the following we consider only the forward radiation in that A > 0. In free space, for which z' =0, the causality
condition in Eq. (17) gives .
Af = 4sh[(1/3)sh~ (343 A¢/2)]/7. (18)



For image charges, with z' # 0, one can approximate Eq. (17) by

!

Af* — (24A¢)A6 — 12(2' /p)? = 0, (—1?- and 12t A¢ € A8 < 2y*Adand %) (19)

which has the solution

_ Ao shy 1, 8¢ [n7 = gh-! ___9A¢2] = (12)4(z" /)11
A9_3ll4 J\/gh(n/3)—sh3+m¢l sh3 for 7n=sh [z - , Ay = (12)%(2" [p) /%, (20)

The linear region of Eq. (20) corresponds to n < 1, whence it reduces to
Af = Ad (14 (3/4)114A¢(z'/p)—3/2] for p<l. (21)
with Afg the value of Af when A¢ = 0. When 0> 1, A in Eq. (20) behaves as

A8~ 2(3A)PH(A) for 5> 1, (22)

with H(z) denoting the Heaviside step function. The transition from behavior in Eq. (21) to that in Eq. (22) occurs
in the intermediate range n ~ 1.

When both S' and S move on the circle, one can show that d@gb)/dt = 0, and consequently the single particle
field in Eq. (6) becornes
@ _ dvie

Ef) ==, with V®(As,7)= (@0 — 8- A0)®. (23)

The factor (1 — 8 -n)R in ® and Ao of Eq. (6) can be written as
(1-8-n)R = R — Bpsin Ab. (24)
With Af implicitly given in Eq. (17), we have

(1 — A% cos AB)

(A5 2/) =
VPNAs,2') = e graG 27— Bpoin A’

(25)
where R(A#,7') is given in Eq. (17). One can write Egg) in Eq. (23) explicitly by expressing
d dAg d
dAs (pdA¢) dAD’ (26)

with (dA8/dA¢) obtained using Eq. (17), and show that EY) thus obtained from Eq. (23) agrees with that given in
Eq. (15).

2.3. Longitudinal Wakefield on § from the Whole Bunch

In this section we derive the longtitudinal wakefield on a single electron S, which is on the circular orbit, by integrating
the single-particle field generated from the whole bunch distribution. Part of the field is generated by source particles
in the bunch when they were on the straight path before the bend, and part by source particles already on the circular
orbit. To remove the singularity due to the line-bunch model when S and S’ overlap in free space (when 2z’ = 0),
and to see the curvature effect of the circular motion of S, we calculate the residual longitudinal wakefield exerted
by the whole bunch on S:

= +]
Ey(r,t) = / ds' Ego(r,t,s')n(s"), with Ego = Eso — Eyo- (27)
—oQ



Here, Egp is.given in.Eq,. (6), and E,q is. the inertial single-particle apace-charge field from §'.t0.& whentba.bunch... ...,

moves on a straight path with constant velocity v = Be:

dV, €
=t As, 2) = .
Eqo dAs’ Vo(As,2') v A + 22 [ . (28)
The corresponding residual potentials are .
i) = ylad) vy, ; (29)

When ca.lcula.tingf;'g on S in Eq. (27), we use Eg‘;,) = E,(,g) — E,o for Egy when the source electron S is on the
straight path, and E‘gi? = Eg? — E,o for Ego when S is on the circular orbit. Consequently one gets

B6,0.4) = B9 + B0 0
with
B = [ E080 (- a0

0 820 Ly ny
EY = / By (As, 2')n(s — As)dAs. (31)
Asolz')

The integration limit As = As;(8,2’) in Eq. (31) is the transition point from cases (a) to (b) when S’ is at the
entrance of the arc, namely, ¢ = z' = 0. Using Eq. (17) with A8 =8 — ¢’ = 6, we have

Asi(6,2') = pf —~ ﬁ\/[2psin(9/2)]2 +z'2, (32)
The transition between forward and backward radiation occurs at Af = 0. From Eq. (17) this corresponds to
Aso(2") = -2} (33)

In Eq. (31) the negligible contribution to E‘gb) from As € (—o0, Asp) through backward radiation is not included.
Furthermore, one can show that the limiting behavior of V® at As — Asg is

(# =0,As0 = 0,A0 — ﬂ—
L-8", (34)
(z' #0,As0 = —fl2'|, A0 = 0)

V(b)(s — Aso,z') = 728A30
721#)
which leads to V®)(Aso, 2’) = 0. Also one has V(®)(8, As, 2')|asmoo = 0. With these limits, and using Eqs. (11),

(23) and (28) for the expression of Eg:;), 5?, and E,p, respectively, one can integrate Eq. (31) by parts, and rewrite
Eq. (30) for the longitudinal wakefield on S from the bunch as

Eo(0,5,#') = B + B© 4 B 35)
with
ES = [V(6,Asy, 2') — VO (Asy, 2 )In(s — Asy), (36)
E(“) = /m dAs V(a)(g’ As, z’)ﬂ"%és_)’ (37)
Ase(8,2") 8
Asi(0,2") . -
E® = /A..,(z') dAs V(")(As,z')i'%gés—). (38)

Due to the continuity of potentials at ' = 0, or As = As; = Asi(0, '),

(B0 ~ B- A0)P|as, = (B0 ~ B+ A0)P|as, (39)



we can write Eq. (36) as
Eg“) = Vo(d)(ﬂ,As;, 2'Yns — Asy). (40)

We now move on to calculate each term in Eq. (35). First we consider E{(,") in Eq. (40), where Vo(a) given in
Eq. (12) can be simplified as :

V0, 85, #) = — leyI'{,’ (R = psing at o' =0, R= /R +R}), (41)

which reduces to a simpler expression for free-space interaction (2’ = 0):

1]

vi®(e, Asy, 0) = —%tan(ﬂ/tl). (42)

Secondly we study E(®) in Eq. (37), where the potential V(8)(8, As, ') can be explicitly written as

R? cosé
- inf Rl - ~Mh Tend
V0,80, ) = e 2 |1 - o TUREEE | Vi, 43

( ) R VRt RL (43)

In the limit ¥ — oo Eq. (43) cuts off at Ry = 0, or at As = As.:

vy f 0 (Rp>0, or As>As.)
v . { Vac (R; S 0, or As S ABG) ! (44)
where , »
Vael0, ) = ZBloinl o d Ase = p(6 — sind). (45)

Ry

Since E‘g;) = —9V(8) /3As, the step function behavior of V(@) in Eq. (44) depicts the strong 6-function-like Coulomb
interaction from S’ to S when the pancake like Coulomb field carried by the pseudo particle S, as introduced earlier
in Sec. 2.1, shines right on the electron S when R}, = 0. Comparing As,. in Eq. (45) and As; in Eq. (32), one has
As. > As; for v8 > 1. Therefore the integration range for E(®) in Eq. (37) is from As, to As., leading to

E@)(0,8,2') 2 Vae(8, 2')[n(5 — Asc) — n(s — Aay)]. (46)

Lastly we look at E(®) in Eq. (38) with V® given in Eq. (25). In free space (z' = 0), one can replace As in V,
of Eq. (28) by A# using the retardation relation in Eq. (18), and get

277 (2 + 7°0?)
AT+ 72D + 727
which has the following asymptotic behavior

75 (As,0) = o

(o = AB/2), (47)

2 4

V) (As, 0y { 3P 3p . (48)
’ 2e 2e
o2~ p@ags  (eFLa— (384)'/%)
For a Gaussian bunch with charge density function
n(s) = e=2’1200 (49)

V2ro,

where N is the total number of electrons in the bunch, and ¢, is the root-mean-square (rms) bunch length, we
combine Eq. (48) with Eq. (38) to obtain the free-space (2’ = 0) steady-state (fo = 0o) wakefield across the bunch

Eﬂgree(s) = Eg(a =00+ slpl 8, Z’)l%-—»oo,z‘:ﬂ- . (50)



Using the ¥3A¢ > 1 approximation for ¥, in Eq. (48), we obtaine
2

: Ne ©  ($a=$1) (vt
free( .y — ¢a—#1)'/2 = =
& (s)_slla\/ﬁipz/aa;‘/ﬁfo : PTE ’ (¢ = 8/04, 1= As/0) (51)

a result in agreement with Derbenev, et al.?

It is now straightforward to incorporate two infinite parallel plates spaced by the gap width h, with the bunch
moving on the plane centered between the plates, by considering the array of image charges that comove with the
bunch in the planes z' = £nh in free space, in which n # 0 denotes the image bunch. The total longitudinal force
on the electron § from all the image bunches is thus obtained from Ej in Eq. (35),

[+a]

B0, sim) = 3 (=) Ba(0 = 6o+ 5,5,mh), (%2)

fl=—00

in which 8y = fct is the angle of the bunch center in the arc. Eq. (52) is the principal result of this paper, for
it constitutes the starting point for calculating bend-induced energy spread, which in turn causes degradation in
transverse emittance. An example of wakefield using parameters in Jefferson Lab’ infrared FEL,® where a bunch
with 1 mm bunch length and 40 MeV energy enters into an arc with 1 m radius, was calculated using Eq. (52) for
varying gap width h between the two conducting plates. The transient development of the wakefield from small
amplitude at fg = 5° to the steady-state behavior at 8 = 90° is depicted in Figs. 3(2), 3(b) and 3(c), respectively.
These figures show that the wakefields obtained for plate spacing & = 0.05 m approximately agree with the free-space
wakefields. The shielding effect can be seen for & = 0.02 m, when the wakefields have smaller amplitude and higher
freqency component compared to those of free-space case.

3. POWER LOSS DUE TO BUNCH SELF-INTERACTION

For characterizing the duration and magnitude of the transients, we turn to calculating the shielded power loss
P®(8y; h) of the bunch induced by its self-interaction. This is obtained by integrating the kinetic energy loss of a
single electron over the portion of the bunch lying on the circle:

(0 h) = B0, 0) +2 Y ()" P8, nh), 3

n=1

with ﬁ'(ﬂo,nh) the power loss of bunch, when the bunch center is at fp, due to its interaction with the nth image
bunch obtained from Eg(8, s, nh) in Eq. (52), ie.,

P(6o, nh) = —fee f dsEa(8 = 00 + 5/p, 5, nh)n(s). (54)
—8g
Here the integration spans 8 > 0, or 8/p > —8¢. The free-space power loss is the n = 0 term in Eq. (53):
Pre(8y) = P(6s,0). (55)

When the whole bunch is well into the bend, & > a,/p, the lower limit —fq in Eq. (54) effectively becomes —oo,
and one has # 2 f5. Upon defining the the following functions

f(As) = j " a(s)n(s — As)ds, o(As) = df(As)/dAs, (56)

-0
and denoting As{™(6) = As,(8p, nh), we have from Eq. (54)

P(6o, nh) = P{¥ (8o, nk) + P(D(85,nh) + PO)(fg,nh), (57)
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Figure 3. Longitudinal wakefield E2"(do, 5; h), as given in Eq. (52), across the bunch set by the CSR and space-
charge-induced beam self-interaction, when the beam center is at each of the following angle into the arc: (a) §p = 5°,
(b) 6o = 15°, and (c) 8 = 90°. Here p = 1 m, 0, = 1 mm, Ipeax = 36 A, and E = 40 MeV. The interaction saturates
to steady state at case (c).

where each term in Eq. {57) is mapped to the terms in Eq. (35):

P{(Bo,nh) = —PBeeV [0, As{™(00), nh] HA™ (8o)), (58)

P@(8g,nh) = —PBeeVao(fo, nh)[f(Asc) ~ F(A5™)]lo=0,, (59)
As{™ (60) i

POXgo,nh) = —fee f dAsT®)(As, nh)g(As). (60)
Aln(ﬂh)

Here Eq. (58) is obtained from Eq. (40), Eq. (59) from Eq. (46), and Eq. (60) from Eq. (38).

3.1. Power Loss in Free Space for a Gaussian Bunch

Having developed the above tools, we first study the free-space power loss in Eq. (55) based on Eq. (57) withn = 0.
For a Gaussian distribution given in Eq. (49), the functions f(As) and g(As) in Eq. (56) are

Nze—Aa°/4aE NZAse—Aa’Maf
f(As) = NEN T 9(As) = B~ (61)

For 0y < 1 and n = 0, we have As;, Asg and As. in Eqs. (58}, (59) and (60) respectively as
Asi(80,0) = p63/24, Ase(0)=0, Asc(do) = pB3/6, (62)



by using Egs, . (32),.(33) and (45). We now proceed to calculate each term in Eq. (87) with n.~.0. . The first. term.. . ...

Pé“)(BQ,O) can be obtained using Eqgs. (58) and (42):

(a) _ Pe(Ne) tan(60/4) _[as.(00,0017207
Pi"(8,0) =~ o N e . i, (63)
Using Eq. (45) with |Ry| = |Ry| ~ pf3/2, the second term P(3)(8,,0) in Eq. (57) is obtained from Eq. (59) with
n=0
2
(@ o) BNV 21 (A (00.0)P /267 _ o-[Bsc(80)/207
P00, 0) = VEop 5 ° 'l (64)

Inspection of Eqs. (63) and (64) shows that both Pg“)(ﬂn, 0) and P{*)(8,,0) are transient functions of fg. The two
functions both incresse from zero at the entrance of the bend 8y = 0, rise to their peak values, and decrease to
negligible magnitude at fp ~ 8y, with

Asy(00r,0) = 204, or By = 2(60,/p)"/3. (65)

Notice that Péa)(ﬂo, 0) is about 63 times smaller compared to P(%)(8y,0). For the transient region discussed above,

with o, < p, we have 82 < 1. Therefore PL®(80,0) is negligible compared to P(®}(6p,0). The peak of the latter
function is located at 5 = g, where

_ Be(Ne)* 1.5
- \/Effap foc

We now study P(*)(6g,0) in Eq. (57) by analysing the potential V(}(85,0) in Eq. (60). As shown in Eq. (47) for
free space, the potential V() vanishes for the immediate-neighbor (a = A8/2 = 0) interaction, and reaches its peak
value when @ = ap, or A¢ = A¢, by solving Eq. (17), where dV®/dajaza, =0,

P8, 0) (se(Boc) = 205 or 6o. = (120,/p)"/3). (66)

V|ag, = 0.76e7/p,  (ap = 12/7, Adp =1.877°). (67)

Combining the asymptotic behavior for V) at ¥*A¢ > 1 given by Eq. {48), we can write the factor V() (As)As in
the integrand of Eq. (60) as

5 (b) ~ 1.4‘}’"2 (A¢ = A¢p)
14 (AS)AS ~e { 14A¢2{3 (A¢ 5 7—3) 1 (68)
which is much smaller at A¢ = A¢, than at Ag > 7~3. Thus the energy-dependent peak V)|, is suppressed

by As and has negligible contribution to P(®)(8g,nh). This allows us to use the asymptotic behavior of V() at
Ad > v~ in Eq. (60) to get

P00, 0) = T lB/6, O, O 407 ()

where 7[v, z] is the incomplete Gamma function. The formation angle for the radiated power to saturate to steady
state, 8y = foy, corresponds to the time for the head of the bunch to see photons emitted at the entrance of the bend
by the tail of the bunch, namely

As(0os,0) =4o,, or o5 = 2(120,/p)*/3. (70
f i

Note that both P()(8y,,0) in Eq. (66) and P(*)(8,,0) in Eq. (69) have the parameter dependence (pPot)~1/3,
indicating the straight-path contribution to transient bunch self-interaction is as significant as that of CSR. Since
P(a)(8,, 0) damps to zero at fp > bo:, after a formation length (8o > foy 2 0o¢) one gets the steady-state power loss

. e 1/6
Ptee(00) o PONGy > b, 0) = g%%w—[r(z/s)]{ (71)

in agreement with Schiff.!



3.2. Power Loss due to Interaction with Far Away Image Charges

For image bunches z’ = nh far enough away, the beam cannot see the detailed distribution of the image bunch, and

it interacts with the distant image bunches as if they were point charges. This happens when Eq. (21) reduces to
A(As) = Af  (0a/p < (nh/p?), 3 (72)

for |As| < 40,, so in Eq. (60) we have V() (As, nh) = V)(0,nk). In this case, Aso(nh) > o,. Hence, the limit
Aso(nh) in Eq. (60) is equivalent to —oc as seen by the bunch distribution, and Eq. (60) becomes
, as{™ 3
P®)(8,, nh) = —BeeV N0, nh) ] g(As)dAs = —BeeV B (Asi™, nh) f(As™), (73)
- 00

where the approximation V“’)(Assﬂ), nh) = V®)(0,nh) is used. The total power loss due to the interaction of the
nth image bunch with the bunch itself is P(fo,nh) in Eq. (57). Summing up Pé“), P@ and P®) given in Egs. (58),
(59) and (73), we find that the terms which are functions of As{™ cancel due to the continuity of the potentials as
given in Eq. (39). Therefore, one has for a Gaussian bunch

P(Bg,nh) =~ —BceVac(fo,nh)f(As.) (74)

28c(Ne)? sin®(60/2)8info A, (85)%/207 /
- w1/2g, pl4 sin4(80/2) + (”h/p)zlv Asc(8)%/2 , CHTES (ﬂh/p):i 2) (75)

where P(Bu,nh) rises from zero value at the entrance of the bend 6y = 0, and drops to zero value for fp > foc
when As.(fo) > 20,. The peak value of P(0y,nh) decreases with increasing n as expected. The fact that P(fo,nh)
in Eq. (75) is transient is consistent with the present understanding of shielding, namely, if the two parallel plates
are separated by spacing A, = nhk with ¢,/p < (An/ )32, the contribution of the image bunches at 2’ = *nh to
steady-state shiclding is negligible.

3.3. Power Loss in General Cases

The power loss obtained from Eq. (57}, normalized by the free-space steady-state power loss Pe¢(0) in Eq. (71},
is displayed in Fig. 4, with numerical integration applied for Eq. (60). Here we use parameters p=1mand 7, = 1
mm, typical values in the recirculating accelerator that will drive Jefferson Lab’s infrared FEL (the TR Demo).® The
dotted curve is the transient power loss of the bunch in free space, P(6g,0)/ Pfr**(c0), which rises from zero loss
and saturates to steady state. The other curves in Fig. 4 pertain to the presence of parallel conducting plates. The
solid curve corresponds to h = 5 ¢m, a typical pipe size in the IR, Demo. This spacing is relatively large so as to
avoid beam loss, whereas it provides little shielding of the self-interaction. Stronger shielding can be obtained for
narrower gap size with fixed bunch length, as indicated by the dashed curve corresponding to h = 2 cm. In this case
the steady-state power loss is 25% of the free-space value, in agreement with results obtained by power-spectrum
analysis as reflected in Fig. 4 of Ref. [9].

4. EMITTANCE GROWTH DUE TO BUNCH SELF-INTERACTION

The calculation of emittance growth follows directly from the equation of motion. As an over-simplified model of
beam dynamics, in this section we assume o, /0, € (p/0,)!/3 when the rigid-line-charge model is valid,? and consider
only the emittance growth as a result of the longitudinal wakefield discussed in the previous section. A complete
picture of beam dynamics requires 3-D self-consistent simulation which takes into account the transverse beam size
as well as the transverse force on the beam. We are presently engaged in developing such a simulation and will report
it in future papers. Nevertheless, the simple model provides a tool for benchmarking the wakefield calculation for an
accurate simulation treatment, as well as the lowest order of beam dynamics due to curvature-induced self-interaction.

Here we consider the beam motion as it enters into the bend at ¢ = 0. To first order in deviation from the design
orbit, the equation of motion for a particle in the relativistic bunch is

d%z 2
<7 Twir = ﬁ%m(s, 0) + Ax(s, )], (76)
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Figure 4. Transient power loss of a bunch, due to curvature-induced self-interaction in the presence of parallel
plates, with p = 1 m, 5, = 1 mm, E = 40 MeV, and various plate spacings.

in which z is the offset, from the design orbit in the bend plane, 71(s, 0)mc? is the initial energy offset from the design

energy yome?, with Bp = /1 — 75 2 and A7(s,t) is the energy change induced by space charge and CSR.

¢
Ay(s,t)me? = e/ Eq(s,t)vat'. (77)
0

Solving Eq. (76) for g ~ 1 using Green’s theorem yields

z(s,t) | _ z(s,0) Ax(s,t) 1(s,0)

[ z'(s,t) ] =M [( x'(s,0) + Az'(s,1) +D Yo (78)
where the prime denotes differentiation with respect to pwot, and M and D are the transport matrix and dispersion
vector for the bend, which are, respectively,

M= (‘;{)lst:)gt p8in wol D= p(choswot) . (79)
—p~ ainwgt  coswgl sin wot

In Eq. (78) the space charge and the CSR induced dispersive offset and angle are, respectively,

Az(s,t) | _ t ;[ —peinwet’ | Avy(s, )
[ Az'(s,t) | — Jo wodt coswgt! Yo (80)
The normalized emittance is obtained from the determinant of the second moment matrix

@)/l = | {627 (b=be) 52 = a(s,) — ((s,1)),

(bate) (b)) | T 62 =2(st) — (s, 1), (®1)

where the notation () stands for taking average over the distribution. We now define the initial second moment as
o2, = {{62(s,0)*), 07, = ([2'(5,0)), 05y, = (82(s,0)62'(5,0)), (82)
and the CSR-induced second moment as
he = ((Az — (Az))?), 0ho = (A2 — (A2'))?), 0Aca. = ((Az — (A))(Ax' ~ {Az'))). (83)

With the initial emittance defined as €y: €0 = €(f = 0), we obtain the final emittance as

€ =\fed + Ae?, (84)



where the emittance growth term is
(AE/70)2 = [0'1231:624&::‘ - (aga:Ax‘)zl + (0-3'0‘72&:::’ + Uiaazﬁz - Qo-ggzaozAzAs‘) + [] (85)

The last term in Eq. (85) is related to the initial energy spread, which has zero contribution to Ac at the end of an
achromatic bending system where the dispersion vector D vanishes. When the term o2 o4, dominates in Eq. (85),
the emittance growth is dominated by the CSR-induced dispersive deflection, one then has

A€ > 90700 As, (86)
with 0o the initial transverse rms size of the beam at the entrance of the bend, and oAy the CSR-induced rms

transverse deflection.

As a simple example, we assume the wakefield across the bunch takes its free-space steady-state form everywhere
inside the bend by neglecting the transient behavior before it saturates to steady state. Using Eqgs. (51) and (77),
one has

A‘Y(s)t) = fcwotg(s), : (87)
where by denoting In.ak = Nec/o, as the peak current, I4 = me3 /e the Alfven current, and ¢, = o,/p, we have
2 P 13 Ipeak /oc (¢; - ‘331) —(be—¢1)?
=== S5 s)= | dg"B—rem(4mo0)/2, 88
R YYEW. (a.) Ia (s) o ¢ e (88)

As a result, tﬁé CSR-induced dispersive angular offset in Eq. (80) is

Az' = (wot sinwot + coswot — 1)g(3)/70. (89)

Because /{[9(5)]2} — (g(5))? = 0.4, the free-space steady-state emittance growth given by Eq. (86) is

Ae = 0.4k o40(wot sinwgt + coswot — 1). (90)

5. CONCLUSION

In summary, we have calcnlated analytically the wakefield on the bunch due to self-interaction, and the corresponding
power loss by the bunch, induced by the curvature effect, as a bunch enters from a straight path to a bend in the
presence of conducting plates. Our results show that space charge from the straight path prior to the bend induces
transients in the bunch self-interaction with magnitudes comparable to that from CSR. Also, it is shown that the
interaction of the bunch with the nth image bunch, for ¢,/p < (nh/p)*/?, has only transient effects on the total
power loss of the bunch. The wakefields on the bunch due to self-interaction, as given in Sec. 2, are foundation for the
energy-spread calculation, from which the emittance growth induced by the curvature effect can be obtained. The
study of the actual beam dynamics under such self-interaction requires three-dimensional self-consistent simulation.
Nevertheless, many features of the curvature-induced beam self-interaction, such as the interplay of the transient
space-charge effect from the straight path prior to the bend and transient CSR from the circular orbit, and the
shielding by the plates in light of the interaction of the bunch with image bunches, are revealed via the rigid-line-
charge model applied in this analysis.
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