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Abstract

When a short (mm-length) bunch with high {nC-regime)
charge is transported through a magnetic bending system,
self-interaction via coherent synchrotron radiation (CSR)
and space charge may alter the bunch dynamics signifi-
cantly. We consider a Gaussian rigid-line-charge bunch
following a straight-path trajectory into a circle, with the
trajectory centered between two infinite, parallel, perfectly
conducting plates. Transients associated with CSR and
space charge generated from source particles both on the
straight path and the circle are calculated, and their net
effect on the radiated power is contrasted with that of
shielded steady-state CSR.

1 INTRODUCTION

When short (mm-length), high-charge (nC-regime)
bunches are injected into magnetic bending systems, co-
herent synchrotron radiation (CSR) and space charge may
cause serious degradation of beam quality. This possibil-
ity is a serious concern for various transport-lattice designs
associated with, for example, free-electron lasers (FELs),
including bunch-compressor chicanes preceding wigglers
and recirculation loops associated with energy recovery.
Almost all previous theoretical work on CSR has con-
cerned its steady-state properties. Examples concerning
steady-state CSR in free space include the frequency-
domain [1] and time-domain analyses [2]. Examples
concerning steady-state CSR with shielding, i.e., in the
presence of conducting walls, also include frequency-
domain [3, 4] and time-domain {5] analyses. Only re-
cently have transients in finite-length magnetic bends be-
gun to be considered, the principal example being a time-
domain analysis [6], concerning the transient interaction
of a bunch with itsclf as it passes from a straight path
into a circle in free space. These investigators showed
that both space-charge forces originating from the straight
path and CSR forces originating from the circle make im-
portant contributions to the transient self-interaction.

In this paper, we generalize the theory of transient self-
interaction in a magnetic bend by incorporating conduct-
ing walls to introduce shielding of CSR. Working in the
time domain, we consider an electron bunch with a rigid-
line-charge Gaussian distribution orbiting in the center
plane between two infinite, parallel conducting plates. The
bunch moves from a straight path to a circular orbit and
begins radiating. Transient forces arising from source par-
ticles on the straight path (space charge) and on the circle
(space charge and CSR) are calculated, and their net effect
is obtained. Parallel plates are incorporated by including

forces originating from image charges.

2 ANALYSIS
The Hamiltonian for an electron with charge e is:

H = /(P - eA/c)* + mic? + e®, (1)

where P — eA/c = ymv is the kinetic momentum for
the electron, in which v is its velocity, v is the Lorentz
factor; @ and A are the scalar and vector electromagnetic
potential on the electron, respectively, arising from the
interaction of an external field and the rest of the charge
distribution. Given a rigid-line-charge bunch entering a
circle from a straight path, the rate of change of the kinetic
energy for an “observer” electron S located on the bunch
al the space-time coordinate (r, ) can be derived from the
above Hamiltonian in terms of the potentials ®y and Ag
on S generated by a single “source” electron §':
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where Fgp is the longitudinal electric force exerted by
5" on S; n(s') is the line-density of the bunch, with s’
denoting the distance of electron S’ from the bunch cen-
ter in the bunch rest frame. The subscript “ret” in the
single-electron potentials incorporates the retardation re-
lation for a photon emitted by S’ at (r’,#') to reach $ at
(x,t): e(t—t') = |R|, with R = r(t)—x'(’). In addition,
we have in Eq. (2) n = R/[R| and 8, = vm/c. The
force exerted on single particle by the whole bunch cal-
culated by way of Eq. (2) forms the basis of our analysis.
In what follows, we shall use the indices “(a)” and “(b)"
to denote the case that at retarded times ¢’ the source par-
ficle S* is located on the straight path and on the circle,
respectively. To take into account of the interaction on
8 from image charges due to the presence of the parallel
plates, the source patticle S’ is allowed to have an offset
2' perpendicular to the plane of the orbit. This will cor-
respondingly affect the retardation times associated with

image charges.

2.1 Case(a): S’ on straight path att', S on circle at t

Fig. 1 depicts an observer electron S at angle # on the
circle of radius p at time ¢ experiencing a force generated
from a source electron § (which, in Fig. 1, is an image



Figure 1: Interaction of S’ on 5, with S’ on the straight
path prior to the bend at the retarded time, and S on the
circular orbit.

charge) at coordinate r' = {—=z',0, 2') at time ¢/ (z' > 0).
The trajectories of S and S’ are respectively described by

S:ph=s+ P, (3)

In the coordinate system (X,¥,%), depicted in Fig. 1,
the vector R from §' to S is (R;, Ry, R;) = (psing +
z',pcosf — p,z'). According to Eq. (2), the longitudinal
electric force exerted by S' on S can be obtained from

S -2’ =5 4 Bct’.

F$ = —edV D /pAs, V(@ = V{® 4 (Bg - B Ao),

Vy®) = V(8. 00) — V§7(6, 43),

V{9 (8,As) = e[(1 — cosb) — R, R, sin6/R2)/Ry,

(@o ~ B Ao) D = e(1 — f*cosb)/Ry.

(4)

with 8V /8As = d®{?/Pcdt. Here R? = R2 +
Ri/v» Ri = Ry + R}, ad R, = R. - fR =
#(A¢ + siné — 8) is the distance from S}, to S projected
on the X-direction, with 5, denoting the position of 5 at
time t were it to continue executing uniform linear motion
at all retarded times t' < . We are letting As = s — 5
denote the distance between S’ and S in the rest frame
of the bunch, and we define Ad = As/p. We will show
that when R, = O, the straight path introduces transient
space-charge forces on the bunch comparable to transient
CSR forces from the circle.

2.2 Case(b): S oncircleatt', S oncircle att

The motions of § and S’ are now described by

S:ph=s+pet, S:ipf=s+ft!. (5
Causality requires A9 = § — ¢ to depend on A¢ = (s —
s')/p, the relative spacing of the two particles in the bunch

rest frame, in the manner

pAS = pAg + BR,

Here only the forward radiation is considered in that
Af > 0. In free space, for which z' = 0, the causality con-
dition is Af = 4sh[(1/3)sh~1(3Y3A4/2)]/y. For image
charges, with 2/ £ 0, o, < h/p, and A8 3> y~}, one can

R=/Cpsindd/2) 1 2. (6)

approximate Eq. (6) by A8® — (24A8)A8 — 12(2'/p)* = 0,
which has the solution

_. Ao _Shn g0, A8 Sl
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where Afy = (12)Y%2'/p|'/? is the value of A2
when Ap = 0, and n = sh™'[9A4%/2|z'/p}).

Limiting cases include v < 1, for which A0 =
Abo [1 + (3/4)/4A¢|2'1p|~%/?], and g » 1, for which
A ~ 2(3A¢)'/PH(A4), with H(z) denoting the Heavi-
side step function.

It can be shown that d¢9’) /dt = 0, and consequently

FV = —eov®/ons, V® = (@ — B8 Ag)®),
V) o o B = Feost)
p(A8 — Ap — F sin AB)’

where causality determines A(A¢} per Eq. (6.

®

2.3 Longitudinal Electric Force on S from Whole Bunch

To remove the singularity due to the rigid-line-charge
model when S and S’ overlap, and to isolate the conse-
quences of the circular motion of S, we naw calculate the
residual longitudinal electric force exerted by the whole
bunch on S: Fy = Fy — F,, where F, = —edV, /0As is
the space-charge force obtained when the bunch moves
on a straight path with constant velocity v, ie., V,
e7~%(As? + z'2/4*)~'/2. The cormresponding residual po-
tentials are V(3% = y(ad) _ v,

To calculate Fy, we let As = Asq (8, 2') when &' is at
the entry to the circle ¢ = z' = 0, with As(6,2') =
pd — 8,/(ZpsinB]2)2 + 22 In applying Eq. (2), FSY is
used for Fyo if As > As, and F$Y is used if Asp < 85 <
As;, with Asg(2') = —p|z'| designating the transition
point between forward and backward radiation occurring
at A9 = 0. Upon applying Egs. (4) and (8) and integrating
Eq. (2) by parts, noting that V(3)(8, o) = V(*)(Aso) = 0,
we obtain the residual longitudinal electric force on S aris-
ing from the whole bunch:

Bo(0,3,2) = FS® 4 FlO 4 FO),
Féﬂ) = e%(a)(a,As,)n(s — Asy),
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(9)
where one has V;,(")(B,Asf) = —e|Ry|/p(R+psind) from
Eq. (4). It turns out that F® is negligible compared to
F(a) and F(¥), Since the potentials are continuous at entry
to the circle, (®o — 8- Ao)(P|a,, = (B0~ B - A0) s,
a strong, energy-dependent, transieat accelerating force
arising from space charge generated on the straight path



cancels with a strong, energy-dependent, transient decel-

erating force arising from CSR on the circle.

_ From Eg. (4) one can show that when |R.| > Ry /7,

. V) behaves like a step function which cuts off at As =
As. = p(8 —sind): V(@ ~ @9, YH(-R.), with

Ue)8, ") = 2e{R,|sinf/R? . This result can be traced

to the impulse-like behavior of the single particle space- -

charge force Fig’ in Eq. (4) on S from ' when R’ = 0.
For 46 > 1, the cutoff occurs on the straight path, As, >
As,, leading to F(®) o2 eU(*}(9, z')[n(s — As.) ~ n(s —
As, )], which is an energy-independent transient force with
peak value comparable in magnitude with F(¥).

It is now straightforward to incorporate two infinite par-
aliel plates with spacing A, with the bunch moving on the
plane centered between the plates, by considering the ar-
ray of image charges that comove with the bunch in the
planes z’ = xnk. The total shielded longitudinal force
F3b on the electron S from all the image bunches is thus
obtained from the unshielded force F in Eq. (9),

F32(8g,8) = i (=)*Fo(0 = 60 + 8/p,5,nh), (10)

n=—wx

in which 8y = Bct/p is the angular coordinate of the bunch
center. Eq. (10) constitutes the starting point for calcu-
lating bend-induced energy spread, which in turn causes
degradation in transverse emittance.

3 POWERLOSS

To look at the amplitudes and duration of the transients, we
turn to a calculation of the shielded power loss P#(g,) of
the bunch induced by its self-interaction, This is obtained
by integrating the rate of kinetic energy loss of a single
electron over the portion of the bunch on the circle:

P(60) = P(fo,0) + 2 i(_)nﬁ(ao, nh),

n=l

B(8y,nh) = —ﬁc/:o a’sﬁ‘a(ﬂ = 6o+ 5/p, 8, nh)n{s),

(11)
vghere f’(ﬂo, 0) is the power loss in free space, and
P(8p, nh) represents the bunch'’s power loss due to its in-
teraction with the nth image bunch obtained from £ given
in Eq. (10). The integration spans # > 0, or 58 > —#bp.
When the whole bunch is well into the bend, 8 > o, /p,
and the lower limit i, effectively becomes —oo. Denot-

ing As{™(8) = As,(6y, nh), we then have

P(8o, nh) = B{™ (80, nh) + P(9)(80, nh) + POy, nh);
B{) (G0, nh) = —BeeVy ™ [do, As™ (8o), nk] f{AS (6n)),

where

feo)= [ " m(syn(s — As)ds, g(As) = df(As)/dAs,

-0
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In steady-state cases one has P(oo, nh) = P(®)(oo, nh).

The power loss obtained from Eq. (11) using numer-
ical integration for Gaussian bunch distribution, n(s) =
e=*'12. /\/2x5,, is displayed in Fig. 2 for parameters
p=1mand ¢, = | mm, typical values in the recirculat-
ing accelerator that will drive Jefferson Lab’s infrared FEL
(the IR Demo) {7]. The dotied curve is the transient power
loss of the bunch in free space, P(6o,0)/ P(co, 0), which
rises from zero loss and saturates to steady state. This
free-space result agrees with that given in Ref.[6]. The
other curves in Fig. 2 pertain to the presence of parallel
conducting plates. The solid curve comesponds to b = 5
cm, a typical pipe size in the IR Demo. The spacing is
relatively large to suppress beam loss, and it provides little
shielding of the self-interaction. Stronger shielding can be
obtained for narrower gap size with fixed bunch length,
as indicated by the dashed curve corresponding to h = 2
cm. In this case the steady-state power loss is 25% of the
free-space value, in agreement with results obtained by
power-spectrum analysis as reflected in Fig. 2 of Ref. [8].
Many features of the transient power loss can be derived
analytically and expressed in closed form, as we plan to
show in a future, more comprehensive paper.
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Figure 2: Transient power loss of a bunch, due to
curvature-induced self-interaction in the presence of par-
allel plates, with p = 1 m, ¢, = 1 mm, and various plate
spacings h. Here 6; is the angle of bunch center into the
bend.
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