JLAB-PHY-97-02

Database Driven Scheduling for Batch Systems

Ian G. Bird, Rita Chambers, Mark E. Davis, Andy Kowalski,
Sandy Philpott, Dave Rackley, Roy Whitney

SURA/Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606

Experiments at the Jefferson Laboratory will soon be generating
data at the rate of 1 TB/day. In this paper we present a database
driven scheme that we are currently implementing in order to en-
sure the safe archival and subsequent reconstruction of this data.
We use a client-server architecture implemented in Java to serve
data between the experiments, the mass storage, and the processor
farm.

Key words: Database; Client/Server; Batch; Farm; Java;

By mid-1997, experiments running at the Thomas Jefferson National Accel-
erator Facility (“Jefferson Lab”) will generate some 10 MB/s of raw data
that will be copied to mass storage and subsequently reconstructed on a 300
SPECint95 farm of Unix processors. The design of the hardware and issues
addressed in the selection of the system are discussed in another paper sub-
mitted to this conference [1]. Data is archived in a StorageTek robotics silo,
interfaced to four high performance STK Redwood tape transports. Data is
moved in and out of the silo via RAID staging areas. In this paper we discuss
the system we have designed to ensure the safe archival and subsequent pro-
cessing of the data. The control system has been implemented in Java, using
the features of remote method invocation and database access via the Java
Database Connectivity (JDBC) interface.

The system architecture is based on a client-server model with three main
server processes: a tape scheduler, a job scheduler and a database server. User
interaction with all three servers is via a single graphical interface running
on any network connected machine, as well as command line interaction for
certain frequently used operations. Most of the user interaction can also be
achieved through Web browsers. Scheduling and submission of jobs to the
CPU farm is managed by LSF [2]. The database is used as a checkpoint for
error recovery and system startup as well as for general data tracking and
logging. A schematic of the system is shown in Figure 1.

Preprint submitted to Elsevier Preprint 14 February 1997



Database

(Ingres)
IDBC-ODBC Processor
bridge farm
Database
™ LSF
interface
Data transfer
uses OSM
;
! 2
i
'
Tape : Tape Job
Silo Server Server
% User interface
_ . - -] graphical or
User - command-line

Fig. 1. Job and tape scheduling system overview

In order to guarantee archiving of the incoming raw data and to achieve op-
timum use of the Redwood tape drives, there is a unique access route to the
tape silo — the tape server process. There are several types of tape access de-
mand — that of ensuring that the raw data (at 10 MB/s sustained) is safely
archived; data movement to and from the processing farm; and finally that of
general tape archiving. This last includes, for example, copying data onto DLT
for off-site export, as well as backups and user-initiated archiving of files. It
is the responsibility of the tape server to schedule these various demands and
to allocate them tape drives. At least one of the drives will be occupied with
the copying of raw data to tape - this operation taking the highest priority.
Requests to and from the farm take precedence over general requests. The
database is notified of each request, source file and destination and changes
in the request status, and can be used to restart the server when necessary
without loss of data. The actual movement of data into and out of the silo
is done by the hierarchical storage manager OSM [3] with modifications from
DESY and by Jefferson Lab.

The second major component of the system is the job scheduler. It is the
responsibility of this server to accept both “classic” requests like “run this job



on this file” and more commonly “process all today’s data from experiment
X and write the output to tape - here is the command to run”. As the larger
experiments will generate some 500 2 GB files per day, this is the primary
mode that the system is designed to deal with.

The server, when accepting such a request, will query the database to find
the location of “today’s data”, break the resulting list of files into chunks
corresponding to physical tapes and submit streams of jobs to the batch man-
agement system - LSF. In doing the submission, the system will generate on
the fly the scripts necessary to control LSF. Each job cluster (corresponding
to the files on a tape) consists of one control job whose sole function is to copy
the data out of the silo and onto the staging disks, and as many processing
jobs as there are files on the tape. Each of these jobs will run on a CPU node
of the farm. As soon as a file (there may be up to 25 2-GB files on a tape) is
available on the staging area, the job running on the farm will copy it to its
local disk and begin processing it. Once the processing is finished, the data is
copied back to the staging area. The server process will collect outputs from
each initial request (“process today’s data”) and schedule copies back to tape
when it has reasonable amounts of processed files available. While there is
no attempt to keep files in sequence, files corresponding to different initial
requests are not mixed. Network data transfers use the CERN rfio software.

At each stage the database is notified. It is by querying the database that
the job server keeps track of the status of the jobs and requests. We also use
the database to recover from system failures. All monitoring and querying of
the system from the user interface is achieved by database queries of request
and job status rather than direct query of the servers, although that facility is
available to administrators. In addition statistics on the use of the farm and
tape system will be generated from the database tables and viewable on the
Web.

Given that the system is required to be accessible from Web based appli-
cations, and that a client-server solution arises naturally from the necessary
distribution of the various pieces of control software across processors, the use
of Java for the implementation was suggested. With the advent of JDK 1.1
there are new facilities for object communication between processes - the RMI
(remote method invocation) interface coupled with the object serialization ca-
pabilities allow simple object-based communication between processors. Also
in this release of Java is the JDBC interface which allows direct communication
from Java code to a relational database. In our current implementation each
server process communicates directly with the database, the actual implemen-
tation of that communication being hidden from the server via an interface of
database objects that are natural objects inside the server and that may even-
tually map onto several tables inside the database. This mapping is dealt with
by the interface. At the moment we do not use a separate database server -



individual database objects can communicate directly with the database, and
it is the database itself that deals with locking issues etc. If in the future we
introduce a server front-end to the database (which would be for reasons of
efficiency yet to be investigated), the program interface will remain as it is
now, only the communication paths will change. Also, the current implemen-
tation should allow the future substitution of the relational database with an
object database with no or minimal changes to the applications.

At the time of writing (Feb. 1997) the main components of the system have
been prototyped, and the design concepts proven. Remote method invocation
in Java works well and flexibly solves the problem of object communication
across a network. The access to the database via the JDBC driver also works
well and enables an object view of the relational database which is essentially
decoupled from the structure of the database itself. We intend to have the
complete system running in test-production mode by April 1997, and in full
production mode by the summer. Future improvements will involve increases
in processing power, and the use of event (or groups of event) level paral-
lelism on the farm - especially for CPU intensive Monte-Carlo simulations.
For the control software, the use of database triggers combined with pairs
of Observer/Observable objects to propagate database state changes in place
of database queries will be investigated, as well as a more fully-featured and
flexible user interface, and perhaps future extension to an interactive analysis
facility.

References

[1] “Data Management for Batch Systems”; I .G .Bird, R. Chambers, M. E. Davis,
A. Kowalski, S. Philpott, D. Rackley, R. Whitney.
Paper submitted to this conference.

[2] “LSF - Load Sharing Facility”; Platform Computing Corporation.
http://www.platform.com

[3] “OSM - Open Storage Manager”; Computer Associates.
hitp://www.cai.com



