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ABSTRACT

We investigate the role of correlated mp exchange in the extraction of matrix elements of the
strange vector current in the proton. We show that a realistic isoscalar spectral function
including this effect leads to sizeably reduced strange vector form factors based on the

dispersion-theoretical analysis of the nucleons’ electromagnetic form factors.
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One of the outstanding problems in the understanding of the nucleon structure concerns
the strength of various strange operators in the proton. A dedicated program at Jefferson
Laboratory supplemented by experiments at BATES (MIT) and MAMI (Mainz) is aimed
at measuring the form factors related to the strange vector current 3v,s in the nucleon.
It was already pointed out a long time ago by Genz and Héhler [1] that the dispersion—
theoretical analysis of the nucleons’ electromagnetic form factors allows one to get bounds
on the violation of the OZI rule, which leads one to expect that strange matrix elements
should be small [2]. This rule has, however, never firmly been routed in QCD but can
be understood qualitatively in large N¢ (with N the number of colors) [3]. Jaffe [4]
showed that under certain assumptions the information encoded in the isoscalar nucleon
form factors can be used to extract strange matrix elements. Of particular importance for
this type of analysis is the identification of the two lowest poles in the isoscalar spectral
function with the w(782) and the ¢(1020) mesons. The corresponding strange form factors
turn out to be rather large in magnitude, related to the strong coupling of the ¢ to the
nucleon found in the dispersion-theoretical analysis [5]. This analysis was later updated
and extended in [6] based on the novel form factor fits presented in [7]. Loosely spoken,
such an analysis is based on a “maximal” violation of the OZI rule because the spectral
function in the mass region of about 1 GeV is assumed to be given entirely by the ¢ pole.
On the other hand, the coupling of various mesons (like the w and the 7) to the nucleons
has been investigated in great detail in the framework of the Bonn-Jiilich meson exchange
potential for the nucleon-nucleon interaction by Holinde and coworkers {8] . In particular,
the correlated 7p [8][9] and 77 exchange [10] has recently been included consistently. This
leads to a more realistic microscopic picture of the isoscalar spectral function in the mass
region of the ¢ [11]. Our aim is to combine this novel results from the NN interaction with
a fit to the nucleon electromagnetic form factors and to elucidate the strength of the N N
couplings, i.e. the violation of the OZI rule, and the consequences for the extraction of the
strange form factors.

To be specific, consider first the nucleon-nucleon interaction. Although QCD is believed
to be the theory underlying the strong interactions, in the non-perturbative regime of low—
and medium-energy physics, mesons and baryons have retained their importance as effec-
tive, collective degrees of freedom for a wide range of nuclear phenomena. This is most
apparent for the NN system. Here, the interaction between the two nucleons is gener-
ated by meson exchange [12]. Resulting potentials, e.g. the Paris [13], Nijmegen [14] or
Bonn [15] potentials, are able to describe the NN data below pion threshold in a truly
quantitative manner. The full Bonn potential contains apart from single-meson exchanges
higher-order diagrams involving also the A-isobar. The strength of the various baryon-
meson vertices is parametrized by coupling constants. In addition, form factors with cut-off
masses A, are included as additional parameters, they take into account the correspond-
ing vertex extensions. However, there are some longstanding conceptual problems hidden
in the choice of parameters which have been resolved in the past years by Holinde and
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coworkers. First, the fictitious scalar-isoscalar meson oopg, which is needed to provide
the intermediate-range attraction, has been replaced by correlated 2m-exchange [10]. A
second longstanding discrepancy existed for the cut-off Ay, which is rather large in the
present—day potential models (~ 1.3 GeV) compared to the information from other sources,
like e.g. 7N scattering. In [8] it has been shown that the interaction between a 7 and
a p meson (correlated mp exchange) has a strong influence on the N N-potential in the
pion channel. It provides a sizeable contribution with a peak around 1.1 GeV. Due to this
additional m-like contribution one is able to reduce the cut-off A;yn, which is now in much
better agreement with information from other sources. The third well-known discrepancy
is the W NN coupling constant, which in most of the NN potentials is three times bigger
than predicted by SU(3) symmetry [16]. It has also been shown in [9] that in the w-channel
the correlated 7p exchange gives a sizeable contribution which allows the choice of a value
for g,nn which is in reasonable agreement with the SU(3) prediction. The process missing
in the original Bonn potential is depicted in fig. 1. It has been analyzed in detail in [9].
The result is given in terms of a dispersion integral, which for simplicity can be represented
by an effective one-boson exchange, denoted as w’, in the w-channel,

1 o p‘I‘;(S,t/) dtl - _ gZ/’NN (1)
7 J MMz =t t— M2

The spectral function p% is again peaked around 1.1 GeV. The pole fit, eq.(1), gives the
following w’ parameters: M, = 1.12GeV, g% yy/4m = 8.5 for the vector and f2yy/47 =
1.5 for the tensor coupling. Moreover, it turns out that g, nvy < 0 and K = funN/gu NN >
0. In what follows, we use this effective pole instead of the full spectral function. This
approach has further been extended to include kaon loops and hyperon excitations, with
the parameters fixed from a study of the reactions pp — AA and pp — XX [17]. There
are sizeable cancellations between the various contributions from graphs (see fig. 2) with
intermediate K’s, K*’s and diagrams with the direct hyperon interactions [11] leading to a
very small ¢ coupling, ,

%%’rﬁ ~ 0005, ry~ +0.2 . 2)
The various contributions are tabulated in table 1. The sign of the tensor coupling is very
sensitive to the details of the calculation. The smallness of these couplings amounts to a
“resurrection” of the OZI rule. Note that such strong cancellations have also been observed
in the quark model study of [18].

The structure of the nucleon as probed with virtual photons is parametrized in terms of
the so-called Dirac (F}) and Pauli (F3) form factors. These form factors have been mea-
sured over a wide range of space-like momentum transfer squared, ¢t = 0... — 35GeV? but
also in the time-like region either in pp annihilation or in ete™ — pp,an collisions. The
tool to analyze these data in a largely model-independent fashion is dispersion theory [5].



We therefore briefly review the dispersion-theoretical formalism developed in [7] and dis-
cuss the pertinent modifications due to the constraints from the NN interaction described
before. Assuming the validity of unsubtracted dispersion relations for the four form factors
FII O1(1) [19], one separates the spectral functions of the pertinent form factors into a
hadronic (meson pole) and a quark (pQCD) component as follows,

FO@) = FO@)L(t) = )dn +Z%§—(I)(TA/€2—Z} [ln (AZQ-?; t)]"” (3)

where FP(t) = F?(t) L(t)~ parametrizes the isovector (I = 1) two-pion contribution (in-
cluding the one from the p) in terms of the pion form factor and the P-wave mw N Npartial
wave amplitudes in a parameter—free manner. In addition, we have three isovector poles,
the masses of the first two can be identified with physical ones, i.e. M, = 1.45GeV and
M,» = 1.65GeV. In the isoscalar channel (I = 0), we have the poles representing the w,
the ¢, the ' (parametrizing the correlated mp exchange) and a fourth pole (denoted S). In
what follows, we will assume that from these only the ¢ and the S couple to strangeness.
Notice that it has recently been shown that there is no enhancement close to threshold
of the isoscalar spectral function due to pion loops [20]. Furthermore, A ~ 10GeV? [7]
separates the hadronic from the quark contributions, Qo is related to Aqcp and 7 is the

anomalous dimension,

Fi(t) = (=t)~6+D [m (6‘2—,’;

0

)]_7, 7:2+§4B-, i=1,2, (4)

for t — —oo and 8 is the one loop QCD B-function. In fact, the fits performed in [7]
are rather insensitive to the explicit form of the asymptotic form of the spectral functions.
To be specific, the additional factor L(¢) in Eq.(3) contributes to the spectral functions
for t > A2, i.e. in some sense parametrizes the intermediate states in the QCD regime,
above the region of the vector mesons. The particular logarithmic form has been chosen
for convenience. Obviously, the asymptotic behaviour is obtained by choosing the residues
of the vector meson pole terms such that the leading terms in the 1/{—expansion cancel.
In practice, the additional logarithmic factor is of minor importance for the fit to the
existing data. The number of isoscalar and isovector poles in Eq.(3) is determined by the
stability criterion discussed in detail in [5][7]. In short, we take the minimum number of
poles necessary to fit the data. Specifically, we have four isoscalar and three isovector
poles. This fourth isoscalar pole is necessary since most isoscalar couplings are fixed (as
described above) and otherwise we would not be able to fulfill the various normalization
and superconvergence relations. We are left with three fit parameters, these are the masses
of the third isovector and the fourth isoscalar pole as well as the residuum ay.

The spectral functions of the isoscalar form factors F 1(?2) encode information about the
strange vector current since the photon couples to a certain extent via mesons with strangeness
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(here the ¢ and the S) to the nucleon. Assuming that the strange form factors have the
same large momentum fall-off as the isoscalar electromagnetic ones [4][6] and neglecting
the small w — ¢ mixing, it is straightforward to extract the strange Dirac and Pauli form

factors following the formalism outlined in [4][6]
M; — M3
(t— MZ)(t— M3)’
M} — M3
(t = M)(t— Mg)’

Fp(t) =t L(t)a L;*

F3(t) = L(t) ay Ly ()
with L; = 1/L(M}). Clearly, the size of these strange form factors is given by the strength
of the ¢—nucleon couplings (as encoded in the residua a‘f2) In partlcular we notice that

the sign of the strange radius rf , is determined from the sign of a1 whereas the sign of the

strange magnetic moment, p, = FQ( )(0), is fixed by the sign of the tensor coupling ~ al.

A best fit to the available data as compiled in [21] is obtained with Mg = 1.63GeV,
M = 1.72GeV and a¥ = 0.677 (for gyny = —0.24 and k¢ = 0.2). The x?/datum of the fit
is 1.02. All contraints are fulfilled to high numerical accuracy. A detailed account of these
results i 1s given in [22]. The corresponding strange form factors are shown in fig. 3. Notice
that F} )( t) varies very weakly between t = —1... — 10 GeV2. Furthermore, the strange
magnetic moment and radius are g, = 0.003 n.m. and r? = 0.002fm?, respectively. These
are orders of magnitude smaller than in previous analysis [4][6] where the ¢ pole subsumed
the non-strange physics of the isoscalar spectral function in the mass region of about 1 GeV,
i.e. the sizeable effect of the mp correlations. The use of a more realistic spectral function
based on the constraints from the N N interaction indeed leads to a reduction of the strange
matrix elements as anticipated from the OZI rule. Of course, the analysis presented here
can be sharpened by including the effects of w — ¢ mixing and by studying the dependence
on the large-t behaviour of the strange form factors. This will, however, not change the
main conclusion of our work, namely that the inclusion of correlated mp-exchange in the
isoscalar spectral function for the nucleon electromagnetic form factors leads to a sizeable
reduction of the strange vector current matrix elements in the proton. The experimental
information concerning the strange form factors is thus eagerly awaited for.
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Figure Captions
Fig.1 Correlated mp exchange missing in the Bonn potential.

Fig.2 Hadronic model for the ¢ N N vertex consisting of Born terms and interaction diagrams

(as indicated by the blobs).
Fig.3 Strange form factors Fl(s)(t) (solid line) and FZ(S)(t) (dashed line).
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Tables

g f
KK -0.32 | —0.15
K*K — KK* || —0.39 | —0.20
K*K* +0.25 | +0.40
all mesons —0.47 { +0.14
YE 4+ AA || +0.23 | —0.19
Sum -0.24 | —0.05

Table 1: Various contributions to the NN vector (g) and tensor coupling (f) (compare
fig. 2). Given is also the sum of the individual contributions. In the case of the tensor
coupling, the meson contributions can not simply be added since the spectral functions have
different signs and the corresponding monopole fit to the sum of the spectral functions has
a considerably harder form factor than the individual contributions. In contrast, for the
vector coupling the monopole cut offs are all of comparable size and thus one can essentially
add the individual contributions.
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