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I. INTRODUCTION

Applications of perturbative QCD to deeply virtual Compton scattering [1{4] and hard exclusive electropro-

duction processes [5{7,4] require a generalization of usual parton distributions for the case when long-distance
information is accumulated in nonforward matrix elements hp � rjO(0; z)jpijz2=0 of quark and gluon light-cone

operators. In refs. [2,6,4] it was shown that such matrix elements can be parametrized by two basic types of non-
perturbative functions. The double distribution F (x; y; t) speci�es the light-cone \plus" fractions xp+ and yr+ of

the initial hadron momentum p and the momentum transfer r carried by the initial parton. Since r+ is proportional
to p+: r+ � �p+, it is possible to introduce the nonforward parton distribution F�(X; t) with X = x+ y� being

the total fraction of the initial hadron momentum taken by the initial partonz. For processes mentioned above,
the parameter � = 1 � (p0z)=(pz) characterizing the longitudinal momentum asymmetry (\skewedness") of the

nonforward matrix element takes the values 0 < � < 1.
At leading twist, there are two light-ray quark operators � (0)�E(0; z;A) (z) and � (0)�5E(0; z;A) (z),

where E(0; z;A) is the standard path-ordered exponential which makes the operators gauge-invariant. In the
forward case, the �rst operator is related to the spin-averaged distribution functions fa(x) while the second one

corresponds to the spin-dependent distribution functions �fa(x). The nonforward parton distributions related
to the � (0)�E(0; z;A) (z) operators were studied in refs. [2,6,4]. In this paper, we will discuss avor-singlet

parton helicity-dependent nonforward distributions corresponding to quark operators � (0)�5E(0; z;A) (z) and
the gluonic operator G��(0)E(0; z;A) ~G��(z) mixing with each other under evolution.

II. NONFORWARD DISTRIBUTIONS

We de�ne the nonforward quark distributions by writing the relevant matrix element as (cf. [1,4])

h p0; s0 j � a(0)ẑ5E(0; z;A) a(z) j p; s ijz2=0 (1)

= �u(p0; s0)ẑ5u(p; s)

Z 1

0

�
e�iX(pz)Ga� (X; t) + ei(X��)(pz)G�a� (X; t)

�
dX

+
(rz)

M
�u(p0; s0)5u(p; s)

Z 1

0

�
e�iX(pz)Pa

� (X; t) + ei(X��)(pz)P�a
� (X; t)

�
dX;

where t � (p0 � p)2, a denotes the quark avor (here we consider only the avor-diagonal distributions), M is

the nucleon mass and s; s0 specify the nucleon polarization. Throughout the paper, we use the \hat" convention
ẑ � z��. In Eq.(1), we explicitly separated quark and antiquark contributions (cf. [4]). This de�nition corresponds

to the parton picture in which the initial quark (or antiquark) takes the momentumXp from the hadronic matrix
element and \returns" into it the momentum (X � �)p. Since the fraction X � � is positive for X > � and negative

when X < �, the nonforward distributions can be divided into two components. In the region X � �, one can treat
Ga� (X; t) as a generalization of the usual distribution function �fa(x). In particular, in the limit t! 0; � ! 0, the

limiting curves for G�(X; t) reproduce �fa(X):

Ga�=0 (X; t = 0) = �fa(X) ; G�a�=0 (X; t = 0) = �f�a(X): (2)

On the other hand, in the region X < �, both quarks should be treated as going out of the nucleon matrix element,
with momenta Xp and (� �X)p, respectively. Now, one can de�ne Y = X=� and treat the function Ga� (X) as the

distribution amplitude 	a
� (Y ). In particular, the G-part in this region can be written as

zThe o�-forward parton distributions introduced by X. Ji [1,3] (see also [8]) and non-diagonal distributions of Collins,

Frankfurt and Strikman [7] can be related to nonforward distributions (see [4]) but do not coincide with them.
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� �u(p0)ẑu(p)

Z 1

0

h
e�iY (rz)Ga� (�Y ) + e�i(1�Y )(rz)G�a� (�Y )

i
dY = � �u(p0)ẑu(p)

Z 1

0

e�iY (rz)	a
� (Y ) dY ; (3)

where the distribution amplitude 	a
� (Y ) is de�ned by 	a

� (Y ) = Ga� (Y �) + G�a� (
�Y �) : The function 	a

� (Y ) gives the

probability amplitude that the initial nucleon with momentum p is composed of the �nal nucleon with momentum
p0 � p� r and a �qq pair in which the pair momentum r is shared in fractions Y and 1� Y � �Y .

For gluons, the nonforward distribution Gg� (X; t) is de�ned through the matrix element

hp0 j z�z�G
a
��(0)E

ab(0; z;A) ~Gb
��(z) j pijz2=0 (4)

= �u(p0)ẑ5u(p) (z � p)

Z 1

0

i

2

h
e�iX(pz) � ei(X��)(pz)

i
Gg� (X; t) dX

+ �u(p0)
(rz)

M
5u(p)(z � p)

Z 1

0

i

2

h
e�iX(pz) � ei(X��)(pz)

i
Pg
� (X; t) dX :

As usual, ~G�� = 1
2�����G

��. Since there are no \antigluons", the exponentials e�iX(pz) and ei(X��)(pz) are
accompanied here by the same function Gg� (X; t). Again, the contribution from the region 0 < X < � can be

written as

i�u(p0)ẑ5u(p) (z � r)

Z 1

0

e�iY (rz)	g
�(Y ; t) dY + \P" term; (5)

with the Y $ �Y antisymmetric generalized distribution amplitude 	g
� (Y ; t) given by

	g
� (Y ; t) =

1

2

�
Gg� (Y �; t)� Gg� (

�Y �; t)
�
: (6)

In the formal t = 0 limit, the nonforward distributions Gg� (X; t), Pg
� (X; t) convert into the asymmetric distribution

functions Gg� (X), Pg
� (X). Finally, in the � = 0 limit, Gg� (X) reduces to the usual polarized gluon density

Gg�=0(X) = X�g(X): (7)

Under pQCD evolution, the gluonic operator

Og(uz; vz) = z�z�G
a
��(uz)E

ab(uz; vz;A) ~Gb
��(vz) (8)

mixes with the avor-singlet quark operator

OQ(uz; vz) =

NfX
a=1

O(+)
a (uz; vz) (9)

where

O(+)
a (uz; vz) =

1

2

�
� a(uz)ẑ5E(uz; vz;A) a(vz) + � a(vz)ẑ5E(vz; uz;A) a(uz)

�
: (10)

The nonforward distribution function GQ� (X; t) for the avor-singlet quark combination (9)

h p0; s0j OQ(uz; vz) j p; sijz2=0 = �u(p0; s0)ẑ5u(p; s)

Z 1

0

1

2

h
e�ivX(pz)+iuX0(pz) + eivX

0(pz)�iuX(pz)
i
GQ� (X; t) dX + \P" term;

(11)

(where X0 � X � �) can be expressed as the sum of \a+ �a" distributions:

GQ� (X; t) =

NfX
a=1

(Ga� (X; t) + G�a� (X; t)) : (12)
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Writing the contribution from the 0 < X < � region as

��u(p0)ẑ5u(p) (z � r)

Z 1

0

e�iY (rz)	Q
� (Y ; t) dY + \P" term; (13)

we introduce the avor-singlet quark distribution amplitude 	Q
� (Y ; t) which has the symmetry property 	Q

� (Y ; t) =

	Q
� (

�Y ; t) with respect to the Y $ �Y transformation.

III. EVOLUTION EQUATIONS FOR LIGHT-RAY OPERATORS

Near the light cone z2 � 0, the bilocal operators O(uz; vz) develop logarithmic singularities ln z2. Calculation-
ally, these singularities manifest themselves as ultraviolet divergences for operators taken on the light cone. The

divergences are removed by a subtraction prescription characterized by some scale �: G�(X; t) ! G�(X; t;�). At
one loop, the set of evolution equations for the avor-singlet light-ray operators has the following form (cf. [9,10]):

�
d

d�
Oa(0; z) =

Z 1

0

Z 1

0

X
b

Aab(u; v)Ob(uz; �vz) �(u + v � 1) du dv ; (14)

where a; b = g;Q and �v � 1 � v, �u � 1 � u. For avor-nonsinglet distributions, there is no mixing, and their
evolution is generated by the QQ-kernel alone. To calculate the kernels, we incorporated the approach [10] based

on the background-�eld method. Below we present our results in the form similar to that used in refs. [6,4]:

AQQ(u; v) =
�s
�
CF

�
1 +

3

2
�(u)�(v) +

�
�(u)

�
�v

v
� �(v)

Z 1

0

d~v

~v

�
+ fu$ vg

��
; (15)

AgQ(u; v) =
�s
�
CF

�
�(u)�(v) � 2

�
; (16)

AQg(u; v) =
�s
�
Nf (1� u� v) ; (17)

Agg(u; v) =
�s
�
Nc

�
4(1� u� v) +

�0
2Nc

�(u)�(v) +

�
�(u)

�
�v2

v
� �(v)

Z 1

0

d~v

~v

�
+ fu$ vg

��
: (18)

Independently, these kernels were calculated by Blumlein, Geyer and Robaschik [11,12]. Their results agree with

ours.

IV. EVOLUTION EQUATIONS FOR NONFORWARD DISTRIBUTIONS

Inserting the light-ray evolution equations (14) between chosen hadronic states and parametrizing matrix ele-

ments by appropriate distributions, one can get the \old" DGLAP [13{15] and BL-type [16{18] evolution kernels
as well as calculate the new kernels �W ab

� (X;Z) governing the evolution of nonforward parton distributions:

�
d

d�
Ga� (X; t;�) =

Z 1

0

X
b

�W ab
� (X;Z)Gb�(Z; t;�) dZ : (19)

Extracting �W ab
� (X;Z) from the light-ray kernels Aab(u; v), one should take into account the extra (pz) factor

in the rhs of the gluon distribution de�nition, which under the Fourier transformation with respect to (pz) results
in the di�erentiation @=@X. Thus, it is convenient to introduce �rst the auxiliary kernels �Mab

� (X;Z) directly

related to the light-ray kernels A(u; v) by

�Mab
� (X;Z) =

Z 1

0

Z 1

0

Aab(u; v) �(X � �uZ + v(Z � �)) �(u + v � 1) du dv : (20)
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The �W -kernels are obtained from the �M -kernels using

�W gg
� (X;Z) = �M gg

� (X;Z) ; �WQQ
� (X;Z) = �MQQ

� (X;Z); (21)

@

@X
�W gQ

� (X;Z) = ��M gQ
� ( eX;Z) d eX ; �WQg

� (X;Z) = �
@

@X
�MQg

� (X;Z) : (22)

Hence, to get �W gQ
� (X;Z) we should integrate �M gQ

� (X;Z) with respect to X. We �x the integration constant

by the requirement that �W gQ
� (X;Z) vanishes for X > 1. Then

�W gQ
� (X;Z) =

Z 1

X

�M gQ
� ( eX;Z) d eX : (23)

Integrating the delta-function in eq.(20) produces four di�erent types of the �-functions, each of which corresponds
to a speci�c component of the kernel governing the evolution of the nonforward distributions.

V. BL-TYPE EVOLUTION KERNELS

When � = 1, G�(X) reduces to a distribution amplitude whose evolution is governed by the BL-type kernels:

�W ab
�=1(X;Z) = V ab(X;Z): (24)

Taking � = 1 in Eq.(20) we obtain

�Mab
�=1(X;Z) � Uab(X;Z) =

Z 1

0

Z 1

0

Aab(u; v) �(X � �uZ � v(1� Z)) �(u + v � 1) du dv : (25)

In fact, the BL-type kernels appear as a part of the nonforward kernel W ab
� (X;Z) even in the general � 6= 1; 0

case. As explained earlier, if X is in the region X � �, then the function G�(X) can be treated as a distribution
amplitude 	� (Y ) with Y = X=�. For this reason, when both X and Z are smaller than �, the kernels W ab

� (X;Z)

simply reduce to the BL-type evolution kernels V ab(X=�; Z=�). Indeed, the relation (20) can be written as

�Mab
� (X;Z) =

1

�

Z 1

0

Z 1

0

Aab(u; v) � (X=� � �uZ=� � v(1 � Z=�)) �(u + v � 1) du dv : (26)

Comparing this expression with the representation for the Uab(X;Z) kernels, we conclude that in the region where

X=� � 1 and Z=� � 1, the kernels �Mab
� (X;Z) are given by

�Mab
� (X;Z)j0�fX;Zg�� =

1

�
Uab (X=�; Z=�) : (27)

Now, using the expressions connecting the �W - and �M -kernels, we obtain the following relations between the

nonforward evolution kernels �W ab
� (X;Z) in the region 0 � fX;Zg � � and the BL-type kernels V ab(X;Z):

�WQQ
� (X;Z) =

1

�
V QQ (X=�; Z=�) ; �W gQ

� (X;Z) = V gQ (X=�; Z=�) ;

�WQg
� (X;Z) =

1

�2
V Qg (X=�; Z=�) ; �W gg

� (X;Z) =
1

�
V gg (X=�; Z=�) : (28)

The kernels V ab(X;Z), in their turn, are derived from the auxiliary kernels Uab(X;Z). Due to the symmetry
property Aab(u; v) = Aab(v; u) the kernels Uab(X;Z) satisfy Uab( �X; �Z) = Uab(X;Z). Hence, it is su�cient to

know the U -kernels in the X � Z region only:

Uab(X;Z) = �(X � Z)Uab
0 (X;Z) + �(Z � X)Uab

0 ( �X; �Z) ;
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with the basic function Uab
0 (X;Z) � �(X � Z)Uab(X;Z) given by

Uab
0 (X;Z) =

1

Z

Z X

0
Aab (�v � (X � v)=Z; v) dv : (29)

Using Eqs.(15)-(18), the A! U0 conversion formulas

�(u) �(v) ! �(Z �X) ; 1!
X

Z
; �(u)

�v

v
! 0 ; �(u)

��v
v

�2
! 0;

�(v)
�u

u
!

�
X

Z

�
1

Z �X
; �(v)

�u2

u
!

�
X

Z

�2
1

Z �X
; u+ v !

X

Z

�
1�

X

2Z

�
(30)

and Eqs.(20)-(24), (28) we get the BL-type kernels

V QQ(X;Z) =
�s
�
CF

(�
X

Z

�
1 +

1

Z �X

�
� (X < Z)

�
+

+ fX ! �X;Z ! �Zg

)
; (31)

V Qg(X;Z) =
�s
�
Nf

�
�
X

Z2
� (X < Z) +

�X
�Z2

� (X > Z)

�
; (32)

V gQ(X;Z) =
�s
�
CF

�
X2

Z
� (X < Z) �

�X2

�Z
� (X > Z)

�
; (33)

V gg(X;Z) =
�s
�
Nc

�
2X2 �X � Z

Z2
� (X < Z) +

�
� (X < Z)

Z �X

�
+

+ fX ! �X;Z ! �Zg

+
�0
2Nc

�(X � Z)

�
; (34)

calculated originally in [17,18] for avor-singlet pseudoscalar meson distribution amplitudes. With respect to
integration over 0 � X � 1, the \plus"-prescription for a function V (X;Z) is de�ned by

[V (X;Z)]+ = V (X;Z) � � (X � Z)

Z 1

0

V (Y; Z) dY : (35)

The BL-type kernels also govern the evolution in the region corresponding to transitions from a fraction Z which
is larger than � to a fraction X which is smaller than �. Indeed, using the �-function to calculate the integral over

u, we get

�Mab
� (X;Z)jX���Z =

1

Z

Z X=�

0

Aab

�
[1�X=Z � v(1 � �=Z)] ; v

�
dv ; (36)

which has the same analytic form (29) as the expression forMab
� (X;Z) in the regionX � Z � �. For QQ; gg and Qg

kernels, this automaticallymeans that �W ab
� (X;Z)jX���Z is given by the same analytic expression as �W ab

� (X;Z)

for X < Z < �. Because of integration in Eq.(23), to get �W gQ
� (X;Z) one should also know �M gQ

� (X;Z) in

the region � � X � Z. However, our explicit calculation con�rms that �W gQ
� (X;Z) in the transition region

X � � � Z is given by the same expression as �W gQ
� (X;Z) for X < Z � �.

In application to parton distributions related to nonforward matrix elements, X. Ji was the �rst [3] who calculated
analogous kernels P 0(x; �) which govern the evolution of his o�-forward parton distributions ~H(x; t;�) in the

��=2 < x < �=2 region (in our variables this region corresponds to 0 < X < �). He used a direct momentum-
representation approach in the light-cone gauge. After proper rede�nitions (discussed in [4]), we reproduced his

expressions for the �rst three kernels. For the gluon-gluon kernel, our result formally di�ers from that obtained by
X. Ji [3]. However, due to the symmetry properties of the gluon distribution in the X. Ji approach, the relevant

integral vanishes and the di�erence does not contribute to the evolution. Blumlein et al. [11] derive the \extended"
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BL-kernels [8] from the light-ray evolution equations. For X 6= Z, we agree with their results except for the

gQ-kernel and up to obvious misprints in the QQ and gg-kernels x.

VI. GENERALIZED DGLAP KERNELS

When X > �, we can treat the asymmetric distribution function Ga� (X) as a generalization of the usual distri-
bution function �fa(X) for a skewed kinematics. Hence, evolution in the region � < X � 1, � < Z � 1 is close

to that generated by the DGLAP equation. In particular, it has the basic property that the evolved fraction X
cannot be larger than the original fraction Z. The relevant kernels are given by

�Mab
� (X;Z)j��X�Z�1 =

Z �X

ZZ0

Z 1

0

Aab ( �w (1 �X=Z) ; w (1�X0=Z0)) dw ; (37)

where X0 � X � � and Z0 � Z � � are the \returning" partners of the original fractions X;Z. Note, that since

Z�X = Z0�X0, the kernels �Mab
� (X;Z) are given by functions symmetric with respect to the interchange of X;Z

with X0; Z0. Using the table for transition from the Aab-kernels to the �Mab-kernels in the region � � X � Z � 1

�(u) �(v)! �(Z �X) ; 1!
Z �X

ZZ0
; (u+ v) !

Z �X

2ZZ 0

�
2�

X

Z
�
X0

Z0

�
;

�
�(u)

�v

v
+ �(v)

�u

u

�
!

1

Z �X

�
X

Z
+
X 0

Z 0

�
;

�
�(u)

�v2

v
+ �(v)

�u2

u

�
!

1

Z �X

"�
X

Z

�2

+

�
X0

Z0

�2
#
; (38)

and Eqs.(21), (22), we obtain the kernels �P ab
� (X;Z) � �W ab

� (X;Z)j��X�Z�1:

�PQQ
� (X;Z) =

�s
�
CF

�
1

Z �X

�
1 +

XX0

ZZ0

�
� (X < Z)

+ �(X � Z)

�
3

2
�

Z 1

0

du

u
�

Z 1

0

dv

v

��
!

1

Z
�PQQ(X=Z) ; (39)

�PQg
� (X;Z) =

�s
�
Nf

1

ZZ0

�
X

Z
+
X0

Z0
� 1

�
!

1

Z2
�PQg(X=Z) ; (40)

�P gQ
� (X;Z) =

�s
�
CF

�
X

Z
+
X0

Z0
�
XX0

ZZ 0

�
!

X

Z
�PgQ(X=Z) ; (41)

�P gg
� (X;Z) =

�s
�
Nc

( 
2

�
X

Z
+
X0

Z0

�
Z �X

ZZ0
+

1

Z �X

"�
X

Z

�2
+

�
X 0

Z 0

�2
#!

�(X < Z)

+ �(X � Z)

�
�0
2Nc

�

Z 1

0

du

u
�

Z 1

0

dv

v

��
!

X

Z2
�Pgg(X=Z) : (42)

The formally divergent integrals over u and v provide here the usual \plus"-type regularization of the 1=(Z �X)

singularities. The prescription following from Eqs.(37),(38) is that combining the 1=(Z �X) and �(Z �X) terms
into [G�(Z) � G�(X)]=(Z �X) in the convolution of �P�(X;Z) with G�(Z) one should change u ! 1�X=Z and

v ! 1�X0=Z0.
As expected, the �P ab

� (X;Z) kernels have a symmetric form. The arrows indicate how the nonforward kernels

�P ab
� (X;Z) are related to the DGLAP kernels in the � = 0 limit when Z = Z0 and X = X0. Deriving these

relations, one should take into account that the gluonic asymmetric distribution function Gg� (X) reduces in the
� ! 0 limit to X�g(X) rather than to �g(X).

xWe are grateful to J. Blumlein who informed us that the authors of ref. [11] agree with our results.
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After the appropriate rede�nitions, we managed to reproduce from our results all four kernels �Pab(x; �) (relevant

to the x > �=2 region) calculated by X. Ji [3].
Note, that in the region Z > � the evolved fraction X is always smaller than Z. Furthermore, if Z � � then

also X � �, i:e:; distributions in the X > � regions are not a�ected by the distributions in the X < � regions.

Hence, information about the initial distribution in the Z > � region is su�cient for calculating its evolution in
this region. This situation may be contrasted with the evolution of distributions in the Z < � regions: in that case

one should know the nonforward parton distributions in the whole domain 0 < Z < 1.

VII. CONCLUSIONS

In this letter, we discussed the calculation of the evolution kernels �W�(X;Z) for nonforward parton distributions
G�(X; t) sensitive to parton helicities. We presented the evolution kernels for the relevant light-ray operators and

demonstrated how one can obtain from them the components of the nonforward kernels �W�(X;Z). Our results
have a transparent relation with DGLAP and BL-type kernels and a compact form convenient for further practical

applications such as numerical studies of the evolution of nonforward distributions.
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