THE ASYMPTOTICS OF THE TRANSITION FORM FACTOR $\gamma \gamma^{*} \rightarrow \pi^{o}$ AND QCD SUM RULES ${ }^{a}$

A.V. RADYUSHKIN* ${ }^{\dagger}$
* Old Dominion University, Norfolk, VA 23529, USA; Jefferson Lab, Newport News, VA 23606, USA
R. RUSKOV ${ }^{\dagger}$
${ }^{\dagger}$ Laboratory of Theoretical Physics, JINR, Dubna 141980, Russia

Abstract

In this paper we present the result the transition form factor $\gamma \gamma^{*} \rightarrow \pi^{0}$ in the region of moderately large invariant momentum $Q^{2} \geq 1 \mathrm{GeV}^{2}$ of the virtual photon. In contrast to PQCD , we make no assumptions about the shape of the pion distribution amplitude $\varphi_{\pi}(x)$. Our results agree with the Brodsky-Lepage proposal that the Q^{2}-dependence of this form factor is given by an interpolation between its $Q^{2}=0$ value fixed by the axial anomaly and $1 / Q^{2} \mathrm{pQCD}$ behaviour for large Q^{2}, with normalization corresponding to the asymptotic form $\varphi_{\pi}^{a s}(x)=6 f_{\pi} x(1-x)$ of the pion distribution amplitude. Our prediction for the from factor $F_{\gamma^{*} \gamma^{*} \pi^{\circ}}\left(q_{1}^{2}=0, q_{2}^{2}=-Q^{2}\right)$ is in good agreement with new CLEO data.

The transition $\gamma^{*} \gamma^{*} \rightarrow \pi^{0}$ of two virtual photons γ^{*} into a neutral pion provides an exceptional opportunity to test QCD predictions for exclusive processes. In the lowest order of perturbative QCD, its asymptotic behaviour is due to the subprocess $\gamma^{*}\left(q_{1}\right)+\gamma^{*}\left(q_{2}\right) \rightarrow \bar{q}(\bar{x} p)+q(x p)$ with $x(\bar{x})$ being the fraction of the pion momentum p carried by the quark produced at the $q_{1}\left(q_{2}\right)$ photon vertex. The relevant diagram resembles the handbag diagram of DIS, with the main difference that one should use the pion distribution amplitude (DA) $\varphi_{\pi}(x)$ instead of parton densities. This gives good reasons to expect that pQCD for this process may work at accessible values_of spacelike photon virtualities. The asymptotic pQCD prediction is given by $\mathbf{I}^{13^{1}}(\bar{x}=1-x)$:

$$
\begin{equation*}
F_{\gamma^{*} \gamma^{*} \pi^{0}}^{a s}\left(q^{2}, Q^{2}\right)=\frac{4 \pi}{3} \int_{0}^{1} \frac{\varphi_{\pi}(x)}{x Q^{2}+\bar{x} q^{2}} d x \xrightarrow{q^{2}=0} \frac{4 \pi}{3} \int_{0}^{1} \frac{\varphi_{\pi}(x)}{x Q^{2}} d x \equiv \frac{4 \pi f_{\pi}}{3 Q^{2}} I \tag{1}
\end{equation*}
$$

[^0]Experimentally, the most important situation is when one of the photons is almost real $q^{2} \approx 0 \underset{\sim}{4}$, - . In this case, necessary nonperturbative information is
 exchange diagram for the pion electromagnetic form factor ${ }_{6}^{6}$

The value of I is sensitive to the shape of the pion DA $\varphi_{\pi}(x)$, mainly to its end-point behaviour. In particular, using the asymptotic form $\varphi_{\pi}^{a s}(x)=$ $6 f_{\pi} x \bar{x}^{6} \mathbf{L}^{\prime \prime}$ gives $F_{\gamma \gamma^{*} \pi^{0}}^{a s}\left(Q^{2}\right)=4 \pi f_{\pi} / Q^{2}$ for the asymptotic behaviour' ${ }^{\text {B2 }}$. If one takes the Chernyak-Zhitnitsky form $\varphi_{\pi}^{C Z}(x)=30 f_{\pi} x \bar{x}(1-2 x)^{2}$, the integral I increases by a sizable factor of $5 / 3$, and this difference can be used for experimental discrimination betweẹn the two forms. One-loop radiative QCD

For lower Q^{2}, power corrections become very important. Indeed, the asymptotic $1 / Q^{2}$-behaviour cannot be true in the low- Q^{2} region, since the $Q^{2}=0$ limit of $F_{\gamma \gamma^{*} \pi^{0}}\left(Q^{2}\right)$ is knqwn to be finite and normalized by the $\pi^{0} \rightarrow \gamma \gamma$ decay rate. Theoretically ${ }^{111}, F_{\gamma \gamma^{*} \pi^{0}}(0)=1 / \pi f_{\pi}$. It is natural to expect that the leading term is close to a simple interpolation $\pi f_{\pi} F_{\gamma \gamma^{*} \pi^{0}}^{L O}\left(Q^{2}\right)=$ $1 /\left(1+Q^{2} / 4 \pi^{2} f_{\pi}^{2} \beta^{2}\right.$ between the $Q^{2}=0$-value and the large- Q^{2} asymptotics.
 of the DA for accessible Q^{2}. It introduces a mass scale $s_{o}^{\pi} \equiv 4 \pi^{2} f_{\pi}^{2} \approx 0.67 \mathrm{GeV}^{2}$ close to m_{ρ}^{2}.

Consider a three-point correlation function $h_{1}^{h_{1}^{\prime}}$

$$
\begin{equation*}
\mathcal{F}_{\alpha \mu \nu}\left(q_{1}, q_{2}\right)=2 \pi i \int\langle 0| T\left\{j_{\alpha}^{5}(Y) J_{\mu}(X) J_{\nu}(0)\right\}|0\rangle e^{-i q_{1} X} e^{i p Y} d^{4} X d^{4} Y \tag{2}
\end{equation*}
$$

where J_{μ} is the EM current and the axial-vector current has a non-zero projection onto the neutral pion state. The amplitude $\mathcal{F}_{\alpha \mu \nu}\left(q_{1}, q_{2}\right)$ has a pole for $p^{2}=m_{\pi}^{2}$ with residue proportional to the form factor of interest. The higher states include A_{1} and higher broad pseudovector resonances. Due to asymptotic freedom, their sum for large s rapidly approaches the pQCD spectral density $\rho^{P T}\left(s, q^{2}, Q^{2}\right)$. Hence, the spectral density of the dispersion relation for the relevant invariant amplitude $\mathcal{F}\left(p^{2}, q^{2}, Q^{2}\right)$ can be written as $\rho\left(s, q^{2}, Q^{2}\right)=\pi f_{\pi} \delta\left(s-m_{\pi}^{2}\right) F_{\gamma^{*} \gamma^{*} \pi^{\circ}}\left(q^{2}, Q^{2}\right)+\theta\left(s-s_{o}\right) \rho^{P T}\left(s, q^{2}, Q^{2}\right)$, with the parameter s_{0} being the effective threshold for higher states. To construct a QCD sum rule, we calculate the three-point function $\mathcal{F}\left(p^{2}, q^{2}, Q^{2}\right)$ and then its SVZ-transform $\Phi\left(M^{2}, q^{2}, Q^{2}\right)$ as a power expansion in $1 / M^{2}$ for large M^{2}.

The simplest case is when the smaller virtuality q^{2} is large: $q^{2}, Q^{2},-p^{2} \geq$ $1 G e V^{2}$. Then, to produce a contribution with a power behaviour $\left(1 / p^{2}\right)^{N}$, all three currents should be kept close to each other: all the intervals X^{2}, Y^{2},

[^1]$(X-Y)^{2}$ should be small. Taking into account the perturbative contribution and the condensate corrections, we obtain a QCD sum rule ${ }^{1} \mathrm{~L}^{\prime \prime 2}$. . For $Q^{2}, q^{2} \gg s_{0}$, keeping only the leading $O\left(1 / Q^{2}, 1 / q^{2}\right)$ - terms we obtain:
\[

$$
\begin{align*}
& F_{\gamma^{*} \gamma^{*} \pi^{\circ}}^{L O}\left(q^{2}, Q^{2}\right)=\frac{4 \pi}{3 f_{\pi}} \int_{0}^{1} \frac{d x}{\left(x Q^{2}+\bar{x} q^{2}\right)}\left\{\frac{3 M^{2}}{2 \pi^{2}}\left(1-e^{-s_{0} / M^{2}}\right) x \bar{x}\right. \\
& +\frac{1}{24 M^{2}}\left\langle\frac{\alpha_{s}}{\pi} G G\right\rangle[\delta(x)+\delta(\bar{x})] \\
& \left.+\frac{8}{81 M^{4}} \pi \alpha_{s}\langle\bar{q} q\rangle^{2}\left(11[\delta(x)+\delta(\bar{x})]+2\left[\delta^{\prime}(x)+\delta^{\prime}(\bar{x})\right]\right)\right\} . \tag{3}
\end{align*}
$$
\]

Note, that the expression in curly brackets coincides with the QCD sum rule for the pion DA $f_{\pi} \varphi_{\pi}(x)$ (see, e.g., ref ${ }_{-}^{\prime 2}$). Hence, the QCD sum rules approach is capable to reproduce the pQCD result ($\binom{11}{10}$.

An attempt to get a QCD sum rule for the integral I by taking $q^{2}=0$ in eq. ($(\overline{3} 12)$ is ruined by power singularities $1 / q^{2}, 1 / q^{4}$ in the condensate terms. The perturbative term in the small- q^{2} region has, \log arithms $\log q^{2}$ which are a typical example of mass singularities (see, e.g., ${ }_{2}^{13}$). All these infrared sensitive terms are produced in a regime when the hard momentum flow bypasses the soft photon vertex, i.e., the EM current $J_{\mu}(X)$ of the low-virtuality photon is far away from the two other currents $J(0), j^{5}(Y)$.

Observe also, that power singularities emerge precisely by the same $\delta(x)$ and $\delta^{\prime}(x)$ terms in eq. (${ }^{(121)}$) which generate the two-hump form for $\varphi_{\pi}(x)$ in the CZ-approach $\mathbb{E}_{1}^{(}$. As shown in reft ${ }^{4}$, the $\delta^{(n)}(x)$ terms result from the Taylor expansion of nonlocal condensates like $\langle\bar{q}(0) q(Z)\rangle$.

Our strategy is to subtract all these singularities from the coefficient functions of the original OPE for the 3 -point correlation function eq. ($\overline{(212)}$). They are absorbed in this approach by universal bilocal correlators (see refs $\mathbf{L}^{\mathbf{n}+\mathbf{t}_{2}^{2}}$), which can be also interpreted as moments of the DAs for (almost) real photon $\int_{0}^{1} y^{n} \phi_{\gamma}^{(i)}\left(y, q^{2}\right) \sim \Pi_{n}^{(i)}\left(q^{2}\right)=\int e^{i q_{1} X}\langle 0| T\left\{J_{\mu}(X) \mathcal{O}_{n}^{(i)}(0)\right\}|0\rangle d^{4} X$, where $\mathcal{O}_{n}^{(i)}(0)$ are operators of leading and next-to-leading twist with n covariant derivatives
 "parton" form as a convolution of the photon DAs and some coefficient functions. The last originate from a light cone OPE for the product $T\left\{J(0) j^{5}(Y)\right\}$. The amplitude \mathcal{F} is now a sum of its purely short-distance ($S D$) (regular for $q^{2}=0$) and bilocal (B) parts. Getting the $q^{2} \rightarrow 0$ limit of $\Pi_{n}^{(i)}\left(q_{1}\right)$ requires a nonperturbative input.

After all modifications described above are made, we can write the QCD
sum rule for the $\gamma \gamma^{*} \rightarrow \pi^{0}$ form factor in the $q^{2}=0$ limit:

$$
\begin{aligned}
& \pi f_{\pi} F_{\gamma \gamma^{*} \pi^{0}}\left(Q^{2}\right)=\int_{0}^{s_{0}}\left\{1-2 \frac{Q^{2}-2 s}{\left(s+Q^{2}\right)^{2}}\left(s_{\rho}-\frac{s_{\rho}^{2}}{2 m_{\rho}^{2}}\right)\right. \\
+ & \left.2 \frac{Q^{4}-6 s Q^{2}+3 s^{2}}{\left(s+Q^{2}\right)^{4}}\left(\frac{s_{\rho}^{2}}{2}-\frac{s_{\rho}^{3}}{3 m_{\rho}^{2}}\right)\right\} e^{-s / M^{2}} \frac{Q^{2} d s}{\left(s+Q^{2}\right)^{2}} \\
+ & \frac{\pi^{2}}{9}\left\langle\frac{\alpha_{s}}{\pi} G G\right\rangle\left\{\frac{1}{2 Q^{2} M^{2}}+\frac{1}{Q^{4}}-2 \int_{0}^{s_{0}} e^{-s / M^{2}} \frac{d s}{\left(s+Q^{2}\right)^{3}}\right\} \\
+ & \frac{64}{27} \pi^{3} \alpha_{s}\langle\bar{q} q\rangle^{2} \lim _{\lambda^{2} \rightarrow 0}\left\{\frac{1}{2 Q^{2} M^{4}}+\frac{12}{Q^{4} m_{\rho}^{2}}\left[\log \frac{Q^{2}}{\lambda^{2}}-2\right.\right. \\
+ & \left.\int_{0}^{s_{0}} e^{-s / M^{2}}\left(\frac{s^{2}+3 s Q^{2}+4 Q^{4}}{\left(s+Q^{2}\right)^{3}}-\frac{1}{s+\lambda^{2}}\right) d s\right] \\
- & \left.\frac{4}{Q^{6}}\left[\log \frac{Q^{2}}{\lambda^{2}}-3+\int_{0}^{s_{0}} e^{-s / M^{2}}\left(\frac{s^{2}+3 s Q^{2}+6 Q^{4}}{\left(s+Q^{2}\right)^{3}}-\frac{1}{s+\lambda^{2}}\right) d s\right]\right\}(4)
\end{aligned}
$$

Here we model the bilocal contributions using the asymptotic form for the DAs of the ρ-meson and making them approximately dual to the corresponding ptcontribution. We use the standard values for the condensates and the ρ-meson

Figure 1:

 support the local duality prescription 15.

In Fig 1_{1}^{1}, we present our curve (solid line) for $Q^{2} F_{\gamma \gamma^{*} \pi^{0}}\left(Q^{2}\right) / 4 \pi f_{\pi}$ calculated from eq. $\left(\overline{4} \mathbf{A}_{1}^{1}\right)$ for $s_{0}=0.7 \mathrm{GeV}^{2}$. One can observe very good agreement with the new CLEO data ${ }^{5}$. It is rather close to the Brodsky-Lepage interpolation formula ${ }_{i 1}^{[1}$ (long-dashed line) and the ρ-pole approximation (shortdashed line) $\pi f_{\pi} \bar{F}^{V M D}\left(Q^{2}\right)=1 /\left(1+Q^{2} / m_{\rho}^{2}\right)$. It should be noted that the Q^{2}-dependence of the ρ-pole type emerges due to the fact that the pion duality interval $s_{0} \approx 0.7 \mathrm{GeV}^{2}$ is numerically close to $m_{\rho}^{2} \approx 0.6 \mathrm{GeV}^{2}$. In the region $Q^{2}>Q_{*}^{2} \sim 3 G e V^{2}$, our curve for $Q^{2} F_{\gamma \gamma^{*} \pi^{0}}\left(Q^{2}\right)$ is practically constant, supporting the pQCD expectation ($\left.\mathbf{I}_{1}^{1} 1 \mathbf{1}\right)$. The absolute magnitude of our prediction gives $I \approx 2.4$ for the I-integral with an accuracy of about 20%.

Comparing the value $I=2.4$ with $I^{a s}=3$ and $I^{C Z}=5$, we conclude that our result favours a pion DA which is narrower than the asymptotic form. Parametrizing the width of $\varphi_{\pi}(x)$ by a simple model $\varphi_{\pi}(x) \sim[x(1-x)]^{n}$, we get that $I=2.4$ corresponds to $n=2.5$. The second moment $\left\langle\xi^{2}\right\rangle \equiv\left\langle(x-\bar{x})^{2}\right\rangle$ for such a function is 0.125 (recall that $\left\langle\xi^{2}\right\rangle^{a s}=0.2$ while $\left\langle\xi^{2}\right\rangle^{C Z}=0.43$) which agrees with the lattice calculation ${ }^{46}$.

We are grateful to S.J.Brodsky, H.G.Dosch, A.V.Efremov, O.Nachtmann, D.J.Miller and V.Savinov for useful discussions and comments. The work of AR was supported by the US Department of Energy under contract DE-AC0584ER40150; the work of RR was supported by Russian Foundation for Fundamental Research, Grant $N^{o} 96-02-17631$.

1. A.V. Radyushkin and R.Ruskov, Phys. Lett. B 374, 173 (1996).
2. A.V. Radyushkin and R.Ruskov, Nucl.Phys. B 481, 625 (1996).
3. G.P.Lepage and S.J.Brodsky, Phys.Rev. D 22, 2157 (1980).
4. CELLO collaboration, H.-J.Behrend et al., Z. Phys. C 49, 401 (1991).
5. CLEO collaboration, preprint CLNS-97/1477/CLEO-97-7 (1997).
6. A.V.Efremov and A.V.Radyushkin, JINR report E2-11983 (Oct 1978); Phys.Lett. B 94, 245 (1980).
7. S.J.Brodsky and G.P.Lepage, Phys.Lett. B 87, 359 (1979).
8. V.L.Chernyak and A.R.Zhitnitsky, Phys.Reports 112, 173 (1984); Nucl. Phys. B 201, 492 (1982); B 214, 547(E) (1983).
9. E. Braaten, Phys. Rev. D 28 , 524 (1983).
10. E.P.Kadantseva, S.V.Mikhailov and A.V.Radyushkin, Sov.J. Nucl.Phys. 44, 326 (1986).
11. S.L.Adler, Phys.Rev. 177, 2426 (1969); J.S.Bell, R.Jackiw, Nuovo Cim. A60, 47 (1967).
12. S.V.Mikhailov and A.V.Radyushkin, Phys.Rev. D 45, 1754 (1992).

[^2]13. R.K.Ellis et al., Nucl. Phys. B 152, 285 (1979); G.Sterman, Phys.Rev. D 17, 2773 (1978).
14. M.A.Shifman et al., Nucl.Phys. B 147, 385, 448 (1979).
15. A.V. Radyushkin, Acta Phys. Polon. B 26, 2067 (1995).
16. D.Daniel et al., Phys.Rev. D 43, 3715 (1991).

[^0]: ${ }^{a}$ Talk presented by R. Ruskov at the Photon'97 Conference, Egmond aan Zee, The Netherlands, May 10-15, 1997

[^1]: ${ }^{b}$ Actually, it is a common starting point both for pQCD and QCD SR approaches.

[^2]: ${ }^{c}$ In fact, such interpolation follows from the local duality considerations ${ }^{1}{ }^{1} 5{ }^{5}$

