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Abstract

Within the dispersion relation approach, solutions of integral equations for the multipoles

M3/2
1+ , E

3/2
1+ , S

3/2
1+ are found at 0 ≤ Q2 ≤ 3 GeV 2. These solutions should be used as input

for the resonance and nonresonance contributions in the analyses of pion electroproduc-

tion data in the P33(1232) resonance region. It is shown that the traditional identification

of the amplitude M3/2
1+ (as well of the amplitudes E3/2

1+ , S
3/2
1+ ) with the P33(1232) resonance

contribution is not right; there is a contribution in these amplitudes which has a nonres-

onance nature and is produced by rescattering effects in the diagrams corresponding to

the nucleon and pion poles. This contribution is reproduced by the dispersion relations.

Taking into account nonresonance contributions in the amplitudes M3/2
1+ , E

3/2
1+ , the helic-

ity amplitudes A1/2
p , A3/2

p and the ratio E2/M1 for the γN → P33(1232) transition are

extracted from experiment at Q2 = 0. They are in good agreement with quark model

predictions.

PACS number(s): 11.55.Fv, 11.80.Et, 13.60.Le, 25.20.Lj, 25.30Rw
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1 Introduction

It is known that experimental data on form factors of the γN → P33(1232) transition may

play an important role in the investigation of energetic scale of transition to perturbative

region of QCD. The conservation of quark helicities in the regime of perturbative QCD

leads to the asymptotic relation [1-3]:

GE

GM
→−1, Q2 →∞ (pQCD). (1)

In contrast to this at Q2 = 0 quark model predicts the suppression of GE:

GE

GM
= 0, Q2 = 0 (quark model), (2)

which agrees well with experiment. Thus, the transition from nonperturbative region of

QCD to perturbative one is characterized by a striking change of the behavior of the ratio

GE(Q2)/GM (Q2) , and, therefore, the measurement of this ratio will provide a sensitive

test for understanding of mechanisms of transition to the QCD asymptotics.

For the Coulombic form factor predictions of quark model and pQCD coincide with

each other:

GC

GM
= 0, Q2 = 0 (quark model), (3)

GC

GM
→ 0, Q2 →∞ (pQCD), (4)

and in this case we have no test for investigation of the energetic scale of the transition

to the QCD asymptotics. However, precise measurement of the Q2-dependence of the

Coulombic form factor can be of interest too for the development of realistic models of

the nucleon and the P33(1232).

In the nearest future significant progress in the investigation of the γN → P33(1232)

transition form factors is expected due to construction of continuous wave electron ac-

celerators. These form factors will be studied in the reaction of pion electroproduction

on nucleons via extraction of the resonance multipole amplitudes M3/2
1+ , E3/2

1+ , S
3/2
1+ which

carry information on the contribution of the resonance P33 to this process (the diagram

of Fig. 1d).
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It is well known that an extremely fruitful role in the investigation of pion photo-and

electroproduction on nucleons belongs to the approach based on dispersion relations. The

basis of this approach was founded in the classical works [4,5]. Further, it was developed

in numerous works, among which let us mention the papers [6-12]. Analysing the results

obtained within dispersion relation approach we came to the conclusion that in order to

obtain a proper input for the analysis of expected experimental data in the P33(1232)

resonance region it is very useful to use the approach developed in Refs. [6,7]. Let us

clarify this statement.

The solutions of integral equations for the multipoles M
3/2
1+ , E

3/2
1+ , S

3/2
1+ following from

dispersion relations for these multipoles are obtained in Refs. [6,7] in the form which

contains two parts. One part is the particular solution of the integral equation generated

by the Born term (i.e. by the diagrams of Fig. 1(a-c) corresponding to the nucleon and

pion poles). It has definite magnitude fixed by the Born term. Our analysis shows that

other contributions to the particular solutions for the multipoles M3/2
1+ , E

3/2
1+ , S

3/2
1+ which

can arise from nonresonance multipoles and high energy contributions are negligibly

small.

Other part of the solutions corresponds to the homogeneous parts of the integral

equations. This part has a certain energy dependence fixed by dispersion relations and

an arbitrary weight which should be found from the comparison with experiment.

In the present work (Sec.3) we have repeated the results of Refs. [6,7] for the solutions

of dispersion relations for the multipoles M3/2
1+ , E

3/2
1+ at Q2 = 0. In addition, we have

obtained Q2-evolution of these solutions in the range of Q2 from 0 to 3 GeV 2. The

solutions of dispersion relations for the multipole S
3/2
1+ at 0 ≤ Q2 ≤ 3 GeV 2 are also

obtained. The obtained solutions should be considered as an input for the multipoles

M3/2
1+ , E

3/2
1+ , S

3/2
1+ in the analysis of future experimental data.

Analysing the solutions of integral equtions for multipole amplitudes obtained within

approach of Refs. [6,7] we came also to the conclusion that the traditional identifica-

tion of the amplitude M3/2
1+ (as well of the amplitudes E3/2

1+ , S
3/2
1+ ) with the contribution

of the P33(1232) resonance is not right. The physical interpretation of these solutions
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(Sec. 3) shows that the particular solutions of integral equations generated by the Born

term should be considered as nonresonance background to the contribution of the P33

resonance. These solutions are produced by rescattering effects in the diagrams 1(a-c)

corresponding to the Born term. For the first time the presence of such nonresonance

contribution in the multipoles M
3/2
1+ , E

3/2
1+ was mentioned in Ref. [13] within dynamical

model describing pion photoproduction in the P33 region in terms of the diagrams of Fig.

1 taking into account rescattering effects.

In Sec. 4 taking into account nonresonance contributions in the multipoles M3/2
1+ , E

3/2
1+

the amplitudes Ap
1/2, A

p
3/2 for the γN → P33(1232) transition are extracted from experi-

ment. The magnitudes of these amplitudes turned out to be smaller than the magnitudes

which are traditionally extracted from experiment without taking into account nonres-

onance background contributions in the amplitude M
3/2
1+ . As a result, the traditionally

mentioned disagreement between quark model predictions and experiment for the ampli-

tudes Ap
1/2, A

p
3/2 turned out to be removed.

2 Dispersion relations for invariant and multipole

amplitudes

In this Section we will present very briefly main formulas which are necessary for our

calculations. Following the work [11] we choose invariant amplitudes in accordance with

the following definition of the hadron current:

Iµ = ū(p2)γ5

{
B1

2
[γµ(γk)− (γk)γµ] + 2P µB2 + 2qµB3 + 2kµB4

−γµB5 + (γk)P µB6 + (γk)kµB7 + (γk)qµB8}u(p1), (5)

where k, q, p1, p2 are the 4-momenta of virtual photon, pion, initial and final nucleons,

respectively, P = 1
2
(p1 + p2), Q2 ≡ −k2, B1, B2, ...B8 are invariant amplitudes which are

functions of the invariant variables s = (k + p1)2, t = (k − q)2, Q2.

The conservation of the hadron current leads to the relations:

4Q2B4 = (s− u)B2 − 2(t+Q2 − µ2)B3, (6)
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2Q2B7 = −B′5 − (t+Q2 − µ2)B8, (7)

where B′5 ≡ B5 − 1
4
(s− u)B6 µ is the pion mass. So, only the six of the eight invariant

amplitudes are independent. Let us choose as independent amplitudes following ones:

B1, B2, B3, B′5, B6, B8. For all these amplitudes, except B
(−)
3 , unsubtracted dispersion

relations can be written:

ReB
(±,0)
i (s, t, Q2) = R

(v,s)
i

(
1

s−m2
± ηi
u−m2

)

+
P

π

∞∫
sthr

ImB
(±,0)
i (s′, t, Q2)

(
1

s′ − s ±
ηi

s′ − u

)
ds′, (8)

where± and 0 labels refer to isospin states with a definite symmetry under the interchange

s ↔ u, R(v,s)
i are residues in the nucleon poles (they are given in the Appendix), η1 =

η2 = η6 = 1, η3 = η′5 = η6 = −1, sthr = (m + µ)2, m is the nucleon mass. For

the amplitude B
(−)
3 we take the subtraction point at an infinity. In this case using the

current conservation condition (6) we have

ReB
(−)
3 (s, t, Q2) = R

(v)
3

(
1

s−m2
+

1

u−m2

)
− eg

t− µ2
Fπ(Q2)

+
P

π

∞∫
sthr

ImB
(−)
3 (s′, t, Q2)

(
1

s′ − s +
1

s′ − u −
4

s′ − u′
)
ds′. (9)

In order to connect the invariant amplitudes with cross section, helicity and multipole

amplitudes, it is convenient to introduce intermediate amplitudes fi which are related to

the invariant amplitudes via:

f1 =
a1

8πW
[(W −m)B1 −B5] , (10)

f2 =
a2

8πW
[−(W +m)B1 −B5] , (11)

f3 =
a3

8πW

[
2B3 −B2 + (W +m)

(
B6

2
−B8

)]
, (12)

f4 =
a4

8πW

[
−(2B3 −B2) + (W −m)

(
B6

2
−B8

)]
, (13)

f5 =
a5

8πW

{[
Q2B1 + (W −m)B5 + 2W (E1 −m)

(
B2 −

W +m

2
B6

)]
(E1 +m)

−X
[
(2B3 −B2) + (W +m)

(
B6

2
−B8

)] }
, (14)
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f6 =
a6

8πW

{
−
[
Q2B1 − (W +m)B5 + 2W (E1 +m)

(
B2 +

W −m
2

B6

)]
(E1 −m)

+X
[
(2B3 −B2)− (W −m)

(
B6

2
−B8

)] }
, (15)

(16)

where

a1 = [(E1 +m)(E2 +m)]1/2 ,

a2 = [(E1 −m)(E2 −m)]1/2 ,

a3 = [(E1 −m)(E2 −m)]1/2 (E2 +m), (17)

a4 = [(E1 +m)(E2 +m)]1/2 (E2 −m),

a5 = [(E1 −m)(E2 +m)] /Q2,

a6 = [(E1 +m)(E2 −m)] /Q2,

and

X =
k0

2
(t− µ2 +Q2)−Q2q0, (18)

k0, q0, E1, E2 are the energies of virtual photon, pion, initial and final nucleons in the

c.m.s., W = s1/2. The amplitudes fi are related to cross section, helicity and multipole

amplitudes by the relations (A.3-A.5).

Dispersion relations for the multipoles M1+, E1+, S1+ can be found from the relations

(8,9) using the projection formulas:

M1+ =
1

8

1∫
−1

[
2f1x+ f2(1− 3x2)− f3(1− x2)

]
dx,

E1+ =
1

8

1∫
−1

[
2f1x+ f2(1− 3x2) + (f3 + 2xf4)(1− x2)

]
dx, (19)

S1+ =
1

8

1∫
−1

[
2f5x+ (3x2 − 1)f6

]
dx.

All the subsequent calculations for these multipoles will be made numerically. By this

reason we do not specify further these relations, and dispersion relations forM1+, E1+, S1+

will be written immediately through the dispersion relations (8,9).
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3 Solutions of dispersion relations for the multipoles

M
3/2
1+ , E

3/2
1+ , S

3/2
1+ at Q2 ≤ 3 GeV 2. The interpretation

of these solutions

Let us write the dispersion relations for the multipoles M3/2
1+ , E

3/2
1+ , S

3/2
1+ in the form:

M(W,Q2) = MB(W,Q2) +
1

π

∞∫
Wthr

ImM(W ′, Q2)

W ′ −W − iε dW
′

+
1

π

∞∫
Wthr

K(W,W ′, Q2)ImM(W ′, Q2)dW ′. (20)

Here M(W,Q2) denotes any of the considered multipoles, MB(W,Q2) is the contribution

of the Born term into these multipoles, K(W,W ′, Q2) is a nonsingular kernel arising

from the u-channel contribution into the dispersion integral and the nonsingular part of

the s-channel contribution. In the integrand of the relation (20) we did not take into

account the coupling of M(W,Q2) to other multipoles by the following reason. Here

we consider only resonance multipoles with large imaginary parts. Contributions of

nonresonance multipoles to these multipoles are negligibly small. The couplings of the

resonance multipoles with each other are also reasonably small [7]. In the dispersion

relation (20) we also did not take into account high energy contributions to the multipoles

M(W,Q2) which, if they exist, should be added to MB(W,Q2). Our estimations show

that these contributions to the multipoles M
3/2
1+ , E

3/2
1+ , S

3/2
1+ are negligibly small and do

not affect our results presented below.

In the present work we use the dispersion relations in the P33(1232) resonance region.

From the phase shift analyses of πN scattering in this region [14-17] it is known that the

resonance amplitude h
3
2
1+(W ) of πN scattering is elastic, and, so, can be written in the

form:

h
3
2
1+(W ) = sinδ

3
2
1+(W )exp(iδ

3
2
1+(W )). (21)

In this energy region due to the elasticity of the amplitudes (1+) one can use the
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Watson theorem [18] for the amplitudes M(W,Q2) and write them in the form:

M(W,Q2) = exp(iδ
3
2
1+(W ))|M(W,Q2)|. (22)

From the experimental data [14-17] it is known that for the amplitude h
3
2
1+(W ) the

elasticity condition is strictly fulfilled up to W = 1.5 GeV , i.e. up to energies which

are much higher in comparison with the energies in the P33(1232) resonance region. By

this reason one can assume that the amplitude h
3
2
1+(W ) is elastic at all energies and the

condition (22) is valid on the whole physical cut, i.e.

ImM(W,Q2) = h∗(W )M(W,Q2). (23)

Furthemore, as at W = 1.5 GeV, δ(W ) = 160◦, one can assume that

0 < δ(∞) ≤ π. (24)

With these conditions the dispersion relation (20) transforms into singular integral

equation. At K(W,W ′, Q2) = 0 this equation has a solution which have the following

analytical form (see Ref.[6] and the references therein):

MK=0(W,Q2) = Mpart
K=0(W,Q2) + cMM

hom
K=0(W ), (25)

where

Mpart
K=0(W,Q2) = MB(W,Q2) +

1

π

1

D(W )

∞∫
Wthr

D(W ′)h(W ′)MB(W ′, Q2)

W ′ −W − iε dW ′ (26)

is the particular solution of the singular equation, and

Mhom
K=0(W ) =

1

D(W )
= exp

W
π

∞∫
Wthr

δ(W ′)

W ′(W ′ −W − iε)dW
′

 (27)

is the solution of the homogeneous equation

Mhom
K=0(W ) =

1

π

∞∫
Wthr

h∗(W ′)Mhom
K=0(W ′)

W ′ −W − iε dW ′, (28)
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which enters the solution (25) with an arbitrary weight, i.e. multiplied by an arbitrary

constant cM .

Replacing in the Eqs. (25,26) MB(W,Q2) by

MB(W,Q2) +
1

π

∞∫
Wthr

K(W,W ′, Q2)h∗(W ′)M(W ′, Q2)dW ′, (29)

one can transform the dispersion relation (20) into the Fredholm integral equation for

the imaginary parts of the multipole amplitudes:

ImM(W,Q2) = ImMpart
K=0(W,Q2) + cMImM

hom
K=0(W ) +

1

π

∞∫
Wthr

f(W,W ′, Q2)ImM(W ′, Q2)dW,′ (30)

where

ImMpart
K=0(W,Q2) = sinδ(W )

[
MB(W,Q2)cosδ(W ) + ea(W )r(W,Q2)

]
, (31)

r(W,Q2) =
P

π

∞∫
Wthr

e−a(W ′)sinδ(W ′)MB(W ′, Q2)

W ′ −W dW ′, (32)

ImMhom
K=0(W ) = sinδ(W )ea(W ), (33)

f(W,W ′, Q2) = sinδ(W )
[
K(W,W ′, Q2)cosδ(W ) + ea(W )R(W,W ′, Q2)

]
, (34)

R(W,W ′, Q2) =
P

π

∞∫
Wthr

e−a(W ′′)sinδ(W ′′)K(W ′′,W ′, Q2)

W ′′ −W dW ′′, (35)

a(W ) =
P

π

∞∫
Wthr

Wδ(W ′)

W ′(W ′ −W )
dW ′. (36)

The solution of Eq. (30) contains two parts. One part is determined by the particular

solution (26,31) of the singular integral equation (20) with K(W,W ′, Q2) = 0. It is, in

fact, the particular solution of the integral equation (20). Obviously, there are an infinite

number of particular solutions of Eq. (20) which differ from each other by the solutions

of homogeneous part of this equation. The solution (26,31) and the particular solution

of Eqs. (20,30) generated by (26,31) are concrete solutions which are entirely determined
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by the Born term MB(W,Q2) and turns out to be 0 when MB(W,Q2) = 0. Let us denote

this particular solution of Eq. (20) as Mpart
Born(W,Q2).

Other part of the solution of Eq. (20) is generated by Mhom
K=0(W,Q2). It is the solution

of the homogeneous part of Eq. (20), i.e. of Eq. (20) with MB(W,Q2) = 0. This part

has an arbitrary weight, which can be found only from some additional conditions, for

example, from comparison with experiment.

The solutions Mpart
Born(W,Q2) and Mhom(W,Q2) can be found from the Fredholm inte-

gral equation (30) only by numerical methods. The results of the numerical calculations

for the multipoles M
3/2
1+ , E

3/2
1+ , S

3/2
1+ at Q2 = 0, 1, 2, 3 GeV 2 are presented on Figs. 2-5.

The particular solutions on Figs. 2-4 are normalized by the form factor corresponding to

the dipole formula:

GD(Q2) = 1/(1 +Q2/0.71 GeV2)2. (37)

For the multipole S3/2
1+ the results are presented for the ratio S3/2

1+ /|k|, as this multipole

enter the cross section in the form S
3/2
1+ /|k| (see Appendix, Eqs. (A.3,A.4)).

At Q2 = 0 the solutions of the integral equation (30) for the multipoles M3/2
1+ , E

3/2
1+

have been obtained in Refs. [6,7] too. They coincide with our results. For the multipole

M
3/2
1+ there is a slight, practically invisible, difference in the particular solutions which is

caused by the fact that in Refs. [6,7] high energy contributions to the dispersion relations

are taken into account. The coincidence of our particular solutions with those of Refs.

[6,7] which, in fact, takes place confirms our statement, that high energy contributions

do not affect the particular solutions for the considered multipoles.

The solutions of the homogeneous equation are presented on Fig.5. They are normal-

ized on the same value at the energy EL ≡ (W 2−m2)/2m = 0.34 GeV corresponding to

the center of the P33(1232) resonance.

Let us discuss now the interpretation of the obtained solutions. Suppose, one describes

the amplitudes M3/2
1+ , E3/2

1+ , S
3/2
1+ within some dynamical model in terms of contributions

of the diagrams of Fig.1 taking into account rescattering effects. The examples of such

models can be found in Refs.[13,19]. In such approach the rescattering effects produce

imaginary part in the Born term which is by itself real. The imaginary part produced
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by the final state interaction in the diagrams of Fig.1(a-c) should be considered as non-

resonance background to the P33 resonance contribution in the multipole amplitudes

M3/2
1+ , E

3/2
1+ , S

3/2
1+ . For the first time this was mentioned in Ref. [13]. The attempts to

calculate this nonresonance contribution within dynamical models are connected with

uncertainties coming from the cutoff procedure and the method of taking into account

off-shell effects. In dispersion relation approach due to the elasticity of the h
3/2
1+ amplitude

of πN scattering up to quite large energies and, as a result, due to the validity of the Wat-

son theorem up to energies which are much larger in comparison with the energies in the

P33 resonance region, there is the possibility to find the nonresonance contribution in the

model independent way. As is seen from Eq. (26) the contribution produced by the final

state interaction in the Born term caused by the resonance πN scattering is reproduced

by dispersion relations in the form of particular solution of the integral equation (20)

generated by the Born term. The whole particular solution satisfies the requirements of

unitarity and crossing symmetry. In Refs. [6,7] it is shown that the factor D(W ) in Eq.

(26) is responsible for modification of amplitudes at small distances. By the shape and

magnitude the nonresonance contributions into the multipoles M
3/2
1+ and E

3/2
1+ at Q2 = 0

obtained in this work in the form of particular solutions of Eq. (20) are very close to

those obtained within dynamical model of Ref. [19].

The contribution of the diagram of Fig.1d together with rescattering effects should

be identified with the solution of the homogeneous part of Eq. (20). The rescattering

effects modify the vertices in this diagram. As a result, in the center of the P33(1232)

resonance the vertices γ∗NP33(1232) and πNP33(1232) should be considered as dressed

vertices. The dressed vertex πNP33 can be found from experimental data on the width

of the P33 → πN decay. Let us note that as is seen from Fig. 5 the shapes of the

homogeneous solutions, i.e. the shapes of the P33 contribution, are slightly different for

different multipoles and for different values of Q2. The presence of such difference is

natural due to rescattering effects which can be different for different multipoles and

at different Q2. For the comparison with predictions of quark model, QCD and other

models the magnitudes of the γ∗N → P33(1232) form factors extracted from multipoles
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at W = Wr = 1.232 GeV should be used.

For the analysis of pion electroproduction data a phenomenological approach proposed

by Walker [20] is widely used. In this approach multipole amplitudes, including the

amplitudes M3/2
1+ , E

3/2
1+ , S

3/2
1+ , are parameterized in terms of resonances taken in the Breit-

Wigner form and smooth background contribution. The Breit-Wigner formula for the

multipoles M
3/2
1+ , E

3/2
1+ , S

3/2
1+ |kr|/|k| used by Walker has the form:

MB−W (W ) =
WrΓ

W 2
r −W 2 − iWrΓ

(
qr

q

)2 |k|
|̄kr|

, (38)

where

Γ = Γ

(
|q|
|qr|

)3
q2
r +X2

q2 +X2
, (39)

Γ = 0.114 GeV, X = 0.167 GeV, qr and k̄r are the momenta of pion and real photon in

c.m.s. in the center of the P33(1232) resonance.

Dispersion relations allow to check the Walker approach for the multipolesM3/2
1+ , E3/2

1+ ,

S
3/2
1+ in the P33(1232) resonance region. As is seen from the obtained results the nonres-

onance background in these multipoles has nontrivial behavior and can not be described

by a smooth function. The shape of the P33(1232) resonance contribution is fixed in

dispersion relation approach by the solution of the homogeneous part of Eq. (20). As is

seen from Fig. 5 it also differs from that of the Breit-Wigner formula. So, the input for

the multipoles M3/2
1+ , E

3/2
1+ , S

3/2
1+ obtained in this work within dispersion relation approach

does not coincide with that in the phenomenological approach proposed by Walker.

4 Comparison with experiment at Q2 = 0. Ampli-

tudes Ap
1/2, Ap

3/2 and E2/M1 ratio for the γN →

P33(1232) transition extracted from experiment.

In this Section we will present our results on the description of experimental data for the

multipole amplitudes M
3/2
1+ and E

3/2
1+ at Q2 = 0 which are evaluated with high accuracy

from existing experimental data in the multipole analysis of Ref. [21]. In the considered
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approach these data should be described as a sum of the particular and homogeneous

solutions of the integral equations for the multipoles M
3/2
1+ and E

3/2
1+ obtained in the

previous Section. The particular solutions have definite magnitude fixed by the Born

term. The weights of the homogeneous solutions should be found from the requirement

of the best description of the experimental data. For this aim we have used fitting

procedure. The obtained results together with the experimental data are presented on

Figs. 6,7. In order to demonstrate the role of the nonresonance background contributions

on these figures separately the particular solutions generated by the Born term are given.

The homogeneous solutions taking with the weights obtained in the result of fitting the

experimental data are also presented. The obtained homogeneous solutions give the

following values of multipoles M3/2
1+ and E3/2

1+ corresponding to the contribution of the

P33(1232) resonance:

M
3/2
1+ (γN → P33(1232)) = 4.22± 0.12 µb1/2, (40)

E3/2
1+ (γN → P33(1232)) = −0.055± 0.011 µb1/2. (41)

In Table 1 we present the ratio E1+/M1+ for the transition γN → P33(1232) which fol-

lows from (40,41) and the helicity amplitudes for this transition obtained by the following

formulas:

A3/2
1+ = −

[
3

8π

|k|
|q|

m

M

Γπ
Γ2

]1/2

Ap
1/2, (42)

B3/2
1+ =

[
1

2π

|k|
|q|

m

M

Γπ
Γ2

]1/2

Ap
3/2, (43)

where A1+ = (M1+ + 3E1+)/2, B1+ = E1+ − M1+ and M,Γ, Γπ are the P33(1232)

mass, total and partial widths. In Table 1 we present also the ranges of the amplitudes

Ap
1/2, A

p
3/2 from Ref. [17] which are extracted from existing experimental data without

taking into account nonresonance contribution in the multipole M3/2
1+ . The magnitudes

of these amplitudes desagree with quark model predictions. As it is seen from our results

this desagreement is removed due to taking into account the nonresonance background

produced by rescattering effects in the diagrams corresponding to the Born term.

13



5 Conclusion

The set of the following features of the multipole amplitudes M3/2
1+ , E

3/2
1+ , S

3/2
1+ in the

P33(1232) resonance region:

a. the elasticity of the corresponding amplitude h
3/2
1+ of πN scattering up to energies

which are much higher than the energies in the P33 resonance region and, as a result, the

validity of the Watson theorem in this energy region with the known phase δ3/2
1+ (W );

b. the smallness of high energy contributions and other multipole contributions to

the dispersion relations for the multipoles M
3/2
1+ , E

3/2
1+ , S

3/2
1+ ,

allows to transform the dispersion relations for these multipoles into the integral equations

of the Fredholm type, where the terms which are responsible for the inhomogeneouty of

these equations are determined only by the Born terms. This allowed us to make strict

conclusions on the nonresonance contributions into the multipoles M
3/2
1+ , E

3/2
1+ , S

3/2
1+ and

on the shape of the resonance contributions which are equivalent to the solutions of the

homogeneous parts of the integral equations. The weights of resonance contributions are

not fixed by dispersion relations. These are the only unknown parameters in the multi-

poles M3/2
1+ , E

3/2
1+ , S

3/2
1+ which should be found from experimental data.
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Appendix

The residues in Eq. (8) are equal to:

R(v,s)
1 =

ge

2
(F (v,s)

1 + 2mF (v,s)
2 ),

14



R
(v,s)
2 = −ge

2
F

(v,s)
1 (Q2),

R(v,s)
3 = −ge

4
F (v,s)

1 (Q2), (A.1)

R′(v,s)5 =
ge

4
(µ−Q2 − t)F (v,s)

2 (Q2),

R
(v,s)
6 = geF

(v,s)
2 (Q2),

R
(v,s)
8 =

ge

2
F

(v,s)
2 (Q2),

where in accordance with existing experimental data we have:

e2/4π = 1/137, g2/4π = 14.5,

F
(v,s)
1 =

(
1 +

g(v,s)τ

1 + τ

)
GD(Q2),

F
(v,s)
2 =

g(v,s)

2m

GD(Q2)

1 + τ
, (A.2)

Fπ(Q2) = 1/(1 +Q2/0.59 GeV2),

τ = Q2/4m2, g(v) = 3.7, g(s) = −0.12.

Amplitudes fi introduced in Sec. 2 are related to the multipole and helicity amplitudes

and to the cross section in the following way:

f1 =
∑{

(lMl+ + El+)P ′l+1(x) + [(l + 1)Ml− + El−]P ′l−1(x)
}
,

f2 =
∑

[(l + 1)Ml+ + lMl−]P ′l (x),

f3 =
∑[

(El+ −Ml+)P ′′l+1(x) + (El− +Ml−)P ′′l−1(x)
]
, (A.3)

f4 =
∑

(Ml+ − El+ −Ml− − El−)P ′′l (x),

f5 =
∑[

(l + 1)Sl+P
′
l+1(x)− lSl−P ′l−1(x)

]
,

f6 =
∑

[lSl− − (l + 1)Sl+]P ′l (x),

H1 ≡ f+,+− = f−,−+ = − cos
θ

2
sin θ(f3 + f4)/

√
2,

H2 ≡ f−,++ = −f+,−− = −
√

2 cos
θ

2

[
f1 − f2 − sin2 θ

2
(f3 − f4)

]
,

H3 ≡ f+,−+ = f−,+− = sin
θ

2
sin θ(f3 − f4)/

√
2, (A.4)
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H4 ≡ f+,++ = f−,−− =
√

2 sin
θ

2

[
f1 + f2 + cos2 θ

2
(f3 + f4)

]
,

H5 ≡ f−,−0 = −f+,+0 = − Q

|k| cos
θ

2
(f5 + f6),

H6 ≡ f+,−0 = f−,+0 =
Q

|k| sin
θ

2
(f5 − f6),

k̄

|q|
dσ

dΩπ
=

1

2

(
|H1|2 + |H2|2 + |H3|2 + |H4|2

)
+

+ε
(
|H5|2 + |H6|2

)
− ε cos 2ϕRe (H4H

∗
1 −H3H

∗
2 )− (A.5)

− cosϕ [ε(1 + ε)]1/2Re [H∗5 (H1 −H4) +H∗6 (H2 +H3)] ,

where x = cosθ, θ and ϕ are the polar and azimuthal angles of the pion in c.m.s., k and

q are the momenta of the photon and the pion in this system, ε is the polarization factor

of the virtual photon, fµ2,µ1λ are the helicity amplitudes, λ, µ1, µ2 are the helicities of

photon, initial and final nucleons, respectively, k̄ = (W 2 −m2)/2W .
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Figure Captions

Fig. 1 Diagrams corresponding to the contributions of the Born term (nucleon and

pion poles) and the P33(1232) resonance to the production of pions on nucleons by virtual

photons.

Fig. 2 The multipole amplitude M
3/2
1+ . The imaginary parts of the partial solutions

of the dispersion relations (20) for this amplitude at different Q2 generated by the Born

term. The solutions are divided by the dipole form factor (37). These solutions should

be considered as background contributions (to the P33(1232) resonance) produced by

rescattering effects in the diagrams corresponding to the Born term. EL ≡ W 2−m2

2m
.

Fig. 3 The multipole amplitude E3/2
1+ . The legend is as for Fig. 2.

Fig. 4 The multipole amplitude S3/2
1+ /|k|. The legend is as for Fig. 2.

Fig. 5 The imaginary parts of the solutions of the dispersion relations (20) with

MB(W,Q2)=0 for the multipoles M
3/2
1+ , E

3/2
1+ , S

3/2
1+ at different Q2. These solutions

represent the shape of the P33(1232) resonance contribution into multipoles. The curves

1-4 correspond to the following multipoles: (1) S
3/2
1+ |kr|/|k| at Q2 = 0; (2) E

3/2
1+ at

Q2 = 0; (3) M
3/2
1+ at Q2 = 0 and E

3/2
1+ , S

3/2
1+ |kr|/|k| at Q2 = 1 − 3 GeV 2; (4) M

3/2
1+

at Q2 = 1 − 3 GeV 2. For comparison the shapes of these multipoles corresponding

to the Breit-Wigner formula (38) are presented: dotted line - Q2 = 0, dashed line -

Q2 = 1− 3 GeV 2.

Fig. 6 The multipole amplitude M
3/2
1+ at Q2 = 0. Our results for the imaginary part

of this amplitude (solid line) in comparison with experimental data [21]. Separately,

the nonresonance background contribution given by the particular solution of eq. (20)

(dashed line) and the resonance contribution given by the solution of the homogeneous

part of this equation (dotted line) are presented.

Fig. 7 The multipole amplitude E3/2
1+ at Q2 = 0. The legend is as for Fig. 6.
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Table Captions

Table 1 Helicity amplitudes and E2/M1 ratio for the γN → P33(1232) transition. Our

results are extracted from the phase shift analysis data of Ref. [21] taking into account

the nonresonance contributions into multipoles given by the particular solutions of the

dispersion relations generated by the Born term.
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Table 1: Helicity amplitudes and E2/M1 ratio for theγN➔P33(1232) transition

Our results -109+ 3 -198+ 6 -0.013+ 0.003

Exp. data from
[17]

-140 - (-160) -250 - (-270) -

Nonrelativistic
quark model

-101 -175 0

Relativistic quark
model [2]

-111 -207 -0.021

A1 2⁄
p 10 3– GeV 1 2/–( ) A3 2⁄

p 10 3– GeV 1 2/–( ) E2 M⁄ 1
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