Compton run\#65080 Data Analysis PrimeX-II weekly meeting

Li Ye
Mississippi State University
2015-10-06

outline

65080 run root file :
eg, tdiff , tid ,id1 1d2 , x1 ,x2,y1,y2,e1,e2
total events 1.06 M
basically followed pawel's analysis note for primex-1

- e1 ,e2<0.5 GeV cut
- XY position cut
- Tdiff cut
- Azimuthal Angle diff cut
- Cluster Separation cut
- interaction vertex cut (Z position)
- energy conservation cut

XY position cut

use id1\&id2 info. cut out the inner layer modules

XY position plot before any cut

XY position plot after cut

Tdiff cut

apply energy cut e1>0.5 e2>0.5 then tdiff <-10. || tdiff >15.)

Tdiff

Azimuthal Angle diff cut

Azimuthal angle diff =

add e1+e2 $<2.5 \mathrm{GeV}$ cut

mean value for angle is 178.5 deg then apply cut (140-220 deg) ~ 5* 15.6

Cluster Separation cut

is the distance between two clusters : sqrt((x1-x2) ${ }^{\left.2+(y 1-y 2)^{2}\right)}$

use cut > 16 cm
same as pawel

Separation between clusters

pawel results from Primex-1

Separation Between Clusters: $\Delta \mathbf{y}$ VS. $\Delta \mathrm{x}$ - EXPERIMENT

run\#65080 results from
Primex-2

Energy conservation

$$
\mathrm{E} 0=\mathrm{eg}-(\mathrm{e} 1+\mathrm{e} 2) \sim \sim 0 \quad \text { current cut }<2.5 \mathrm{GeV} \text {. need more cut } ?
$$

Z reconstruction

Z position
$\mathrm{E}^{\prime}=\mathrm{E} 0 /(1+(1-\cos (\theta \gamma)) \mathrm{E} 0 / \mathrm{me})$ Similarly, for the electron its energy is given by,
$\mathrm{E}^{\prime}=(\mathrm{E} 0+\mathrm{me}) /(1+(1-\cos (\theta \gamma)) \mathrm{E} 0 / \mathrm{me})$
Using the above notation the opening angle, $\psi=\arccos \left(\mathrm{k}^{\prime} \cdot \mathrm{p}\right)$, between scattered electron
and photon can be calculated from the energy-momentum conservation, $\cos \psi=1$-m e E 0/E ' E e .
Then use $\psi=\arctan (r 1 / \mathrm{z})+\arctan (\mathrm{r} 2 / \mathrm{z})$ we can reconstruct Z position.

