Accidental for best tdiff

Tdiff w/ only one beam candidate
Accidentals are flat and can be subtracted directly from sidebands

When there are more beam candidates, sometimes accidentals are selected as best tdiff candidate

$$
\begin{aligned}
\sigma & =\sqrt{(1-\lambda) \sigma_{1}^{2}+2 \lambda(1-\lambda) d^{2}+\lambda \sigma_{2}^{2}} \\
\sigma & =1.03 \mathrm{~ns}
\end{aligned}
$$

about 1.35% substituted

Rotated mass $\mathrm{w} /$ best tdiff and $2^{\text {nd }}$ best tdiff

rotated $\mathrm{m}_{r y} \mathrm{w} / 2 \mathrm{nd}$ best tdiff $\theta:[0.00,0.50]$

rotated $\mathrm{m}_{\gamma \gamma} \mathrm{w} / 2 \mathrm{nd}$ best tdiff $\theta:[0.50,1.00$]

Rotated mass $\mathrm{w} /$ best tdiff and $2^{\text {nd }}$ best tdiff

rotated $\mathrm{m}_{\gamma \gamma} \mathrm{w}$ / best tdiff θ : $[1.00,1.50]$

rotated $\mathrm{m}_{\gamma \gamma} \mathrm{w} /$ best tdiff $\theta:[1.50,2.50]$

rotated $m_{r y} w / 2 n d$ best tdiff $\theta:[1.00,1.50]$

rotated $\mathrm{m}_{\gamma \gamma} \mathrm{w} / 2 \mathrm{nd}$ best tdiff $\theta:[1.50,2.50$]

