
Things we need for the proposal:

1. Need plot of projected FF data points as a function of Q2 integrated over t. Include
on the plot the PrimEx-II data point, and the CELLO and BESIII FF points (Ilya)

2. Provide write up on “Results from fitting pseudo-data: projected sensitivities”. If
the fit error for Γπ0→γγ is less than the PrimEx uncertainty, this indicates sensitivity
to Γπ0→γγ comparable to or better than PrimEx. (Ilya)

3. If it seems feasible to determine Γπ0→γγ in the TFF measurement, then indicate how
we can do this: (i) measure absolute cross sections or (ii) measure cross sections
normalized to a known QED reaction (Moller?), or (iii) say that we’re going to do
both. Provide write up on the details. (Ilya, ...)

4. Based on the estimated experimental uncertainties in Γπ0→γγ , aπ, bπ and cπ, estimate

the uncertainty in aHLbL−π
0

µ (Rory)

5. Update section on “Summary of the proposed experiment and impact on studies of
fundamental symmetries” (Ilya and Rory)

6. Need write up on Sergey’s nuclear coherent π0 electro-production calculation. Can
start with the page he provided us. (Sergey)

7. Do a careful read through. (all)
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Abstract
We propose a measurement of the π0 space-like transition form factor (TFF) through

the Primakoff reaction with virtual incident photons. The experiment will run using the
PRad setup in Hall B using 100µ and 250µm thick silicon targets, and a 10.5 GeV electron
beam with 20 nA and 10 nA current. The measurement has sensitivity to two fundamen-
tal observables in low-energy, strong-interaction physics, (i) the π0 radiative decay width
Γπ0→γγ , and (ii) the π0 electromagnetic transition radius. The measurement will deter-
mine Γπ0→γγ with an estimated uncertainty of ± 0.9(yy) % stat. (sys.), to be compared
with the combined PrimEx-I and PrimEx-II result of ± 0.7(1.3) % [1]. One of the larger
uncertainties in the Standard Model prediction for the muon anomalous magnetic mo-
ment is hadronic light-by-light scattering (HLbL), which critically depends on knowledge
of the pseudo-scalar meson TFFs in the low-Q2 region. By measuring the π0 TFF over
the region Q2 ≈ .003 to 0.3 GeV2, where no data currently exists, the proposed experiment
will constrain approximately 65 % of the π0-pole contribution to HLbL with an estimated
uncertainty of zz %.

1 Introduction and physics motivation

The neutral pion transition form factor (TFF) in the low-Q2 space-like region can de-
termine two key observables in low-energy strong-interaction physics, the neutral pion
radiative width Γπ0→γγ , and the neutral pion transition radius. These observables provide
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important test points for calculations based on fundamental symmetries and chiral pertur-
bation theory, [2], as well as providing important constraints for hadronic corrections to
the muon anamalous magnetic moment [3, 4].

Primakoff π0 electro-production can be used to measure the space-like π0 electromag-
netic TFF. Fig. 1 shows the Feynman diagram for the interaction vertex. We define Q2

1

as the negative 4-momentum transfer squared from the electron vertex, and Q2
2 as the

corresponding quantity from the nuclear vertex, where Q2
2 = −t in terms of the usual Man-

delstam variable. The transition is characterized by the form factor Fγ∗γ∗→π0(−Q2
1,−Q2

2),
which to order O(Q4) is given by,
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where aπ and bπ are the linear and curvature terms in the TFF, respectively, and cπ is a
cross term in the expansion.

The cross section for virtual Primakoff production has been given by Hadjimichael and
Fallieros [5],
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π
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∣∣∣∣Fγ∗γ∗→πo(−Q2, t)

Fγ∗γ∗→πo(0, 0)

∣∣∣∣2 sin2(θe2 )sin2(θπ)

×
[
4E1E2sin

2φπ + |~q|2/cos2(θe
2

)

]
(2)

where σM the Mott cross section and η are given by,

σM =
α2cos2( θe2 )

4E2
1sin

4( θe2 )
(3)

η2 =
4

πm3
π

Γπ0→γγ (4)

and FN (t) is the nuclear form factor, θe is the electron scattering angle, and θπ is
the angle between the virtual photon beam momentum ~q direction and the neutral pion
momentum ~kπ direction. This expression for the cross section in similar to that for the real
Primakoff effect, with the notable exception of the form factor Fγ∗γ∗→π0(−Q2, t) which is
of interest here.

The γ∗γ∗π0 vertex has been studied theoretically in VMD and ChPT based models,
[6, 7, 8], as well as those based on treatments of quark substructure [9, 10, 11]. In light
of the recent result for muon g − 2, there has been considerable theoretical interest in the
pseudo-scalar TFFs and how they impact hadronic corrections to (g − 2)µ (see discussion
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in section 2). Most recently lattice calculations [12, 13] have been developed with sufficient
accuracy to complement and test predictions for (g − 2)µ from analytical approaches.

The most significant background to consider in Primakoff experiments is π0 coherent
photo-production [1]. Fig. 2 shows a “textbook” example of this from the PrimEx-II 28Si
data. The prominent peak at the lowest angle is from the Primakoff reaction, and the
peak at ≈ 1.3o is the coherent background. The methodology for extracting the Primakoff
signal from the coherent and incoherent backgrounds is well established [1]. In brief, the
shapes of the Primakoff and coherent angular distributions are constrained, the former by
QED and the nuclear electromagnetic form factor, and the latter by the t-dependence of
the “strong” nuclear form factor and the pion-nucleus interaction. The strong nuclear form
factor is ... Therefore, the analysis effectively reduces to fitting the π0 angular distribu-
tion with the squared sum of the Primakoff and coherent amplitudes, with the coherent
amplitude multiplied by an arbitrary complex phase. The complex phase accounts for the
phase difference between the Coulomb amplitude (Primakoff), and the strong amplitude
(coherent).

In support of this proposal S. Gevorkyan, our PrimEx theoretical collaborator, is de-
veloping a generalization of the coherent amplitude for the case of electro-production. This
work is in progress, and details of the calculation are given in Appendix A. In the low-
Q2 range of the TFF measurement it can be reasonably assumed that the photo- and
electro-production coherent angular distributions (the former is shown in Fig. 2 for 28Si)
are similar. For the TFF measurement we plan to take data on a 28Si target.

Finally, we note that a proposal to measure the pseudo-scalar TFFs was developed by
the PrimEx Collaboration over 20 years ago. The proposal was included in the original
JLab white paper as a key experiment driving the 12 GeV energy upgrade [14, 15].

2 Hadronic corrections to the muon anomalous magnetic
moment

Recently there has been considerable interest in measurements of the pseudo-scalar me-
son TFFs as a means to constrain hadronic corrections to the muon anomalous magnetic
moment. Defining aµ = (g − 2)µ/2 as the deviation of the magnetic moment from the
value g=2 for a point-like spin-1/2 Dirac particle, the experimental measurement [16] and
Standard Model (SM) prediction [4] for aµ are given by,

aexpµ = 116 592 061 (41)× 10−11 (5)

aSMµ = 116 591 810 (43)× 10−11 (6)

which gives a 4.2σ deviation between experiment and Standard Model. As of this writing
FNAL E989 continues to take data on (g − 2)µ, with data taking planned at J-PARC in
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Figure 1: Feynman diagram for the virtual Primakoff reaction

the near future. Therefore, it is reasonable to expect there will be a significant reduction
in the experimental error in aµ over the next several years. For this reason comprehen-
sive theoretical and experimental efforts are underway to reduce the Standard Model
uncertainty in aµ.

There are four classes of corrections to the SM prediction for aSMµ : (i) higher-level QED
diagrams to order α12, (ii) electro-weak corrections at 3-loop level, (iii) hadronic vacuum
polarization, and (iv) hadronic light-by-light scattering. Theoretical uncertainties in the
first two processes, QED and electro-weak corrections, are understood to be small, ±1 ×
10−12 and ±1×10−11, respectively, and do not limit the interpretation of the experimental
results [4].

The third class of correction, hadronic vacuum polarization HVP, can be calculated
using data driven techniques using experimental data. In the data-driven approach the
lowest order HVP is given by

∫
K(s)R(s)/s2 ds, where

√
s is the C.M. energy of the e+e−

system, K(s) is a known kinematic factor, and R(s) is given by,

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(7)

The evaluation of HVP currently stands at aHV Pµ = 6845 ± 40 × 10−11 [4]. As new mea-
surements of e+e− → X improve the determination of R, the error in HVP is expected to
significantly decrease.
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The fourth class of correction, and arguably the most model-dependent in its evaluation,
is hadronic light-by-light scattering, HLbL. Since HLbL is suppressed by a factor α relative
to HVP, aHLbLµ is roughly two orders of magnitude smaller than aHV Pµ . Unlike HVP, HLbL
cannot be reduced to purely data-driven forms, and must be evaluated using experimental
data and hadronic models [3, 4]. The evaluation of HLbL currently stands at aHLbLµ =

92 ± 19 × 10−11 [4]. While aHLbLµ is much smaller than aHV Pµ , with aHLbLµ ≈ α × aHV Pµ ,
the uncertainties in HLbL and HVP are of comparable size.

The single largest contribution to HLbL is from the coupling of two space-like photons
to the pseudo-scalar mesons π0, η and η′, with the coupling parameterized by the pseudo-
scalar TFFs. TFF data are used as input for the evaluation of the pseudo-scalar pole
contributions to HLbL, and for the validation of hadronic models used to calculate the
TFFs. Evaluation of the pseudo-scalar pole contribution to HLbL currently stands at
aHLbL−poleµ = 93.8±4.0×10−11 [4], equal within errors to the total for HLbL summed over
all contributions, aHLbLµ = 92± 19× 10−11. Due to the low mass of the π0 relative to the

η and η′, approximately 67% of aHLbL−poleµ comes from the π0-pole.

Details for calculating aHLbL−poleµ are presented in Appendix A. Also presented in the

appendix are the computational tools we’ve used for the evaluation of aHLbL−π
0

µ . The

expression for aHLbL−π
0

µ is given by the following equation, [17]

aHLbL−π
0

µ =
(α
π

) [
aHLbL:π0(1)
µ + aHLbL:π0(2)

µ

]
(8)

where the two terms on the right must be evaluated from triple integrals over the TFFs,

aHLbL:π0(1)
µ =

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτw1(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2

1,−(Q1+Q2)
2)Fπ0γ∗γ∗(−Q2

2, 0)

(9)

aHLbL:π0(2)
µ =

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτw2(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2

1,−Q2
2)Fπ0γ∗γ∗(−(Q1+Q2)

2, 0)

(10)
with Q1 =

√
Q2

1 and Q2 =
√
Q2

2, and where w1 and w2 are weighting functions given in
Appendix A.

Fig. 3 shows aHLbL−π
0

µ as a fraction of the asymptotic value versus the momentum

cutoff used for the integrals in Eqns. 9 and 10. The figure indicates that aHLbL−π
0

µ saturates
with increasing momentum cutoff. At a momentum cutoff of 0.55 GeV, corresponding to
Q2 = 0.3 GeV 2, aHLbL−π

0

µ is at 65 % of the asymptotic value.
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Figure 3: aHLbL−π
0

µ as a fraction of the asymptotic value as a function of the momentum
cut-off.

3 Previous Measurements of the Neutral Pion TFF in the
space-like region

There are three sources of data for the π0 TFF in the low-Q2 space-like region. Arguably
the most important data point is the radiative width of the neutral pion, Γπ0→γγ , which
fixes the normalization of Fγ∗γ∗→π0(0, 0). Results for the π0 radiative width were recently
published in Science [1]. Combining the PrimEx-I and PrimEx-II results gives

Γπ0→γγ = 7.802± 0.052(stat)± 0.105(sys) eV

Experimental results for Γπ0→γγ from PrimEx and previous measurements are shown in
Fig. 4. The PrimEx result is in agreement with the Chiral Anomaly prediction, and deviates
from theoretical corrections to the anomaly by two standard deviations.

The second source of data are from collider measurements, where γ∗γ → π0. The lowest
Q2 published measurements are by CELLO [18] and CLEO [19] in the Q2 ranges 0.6-2.2
GeV2 and 1.6-8.0 GeV2, respectively. These measurements used the reaction e+e− →
e+e−π0, where two photons are radiated by the colliding e+e− beams, one photon close to
real and the second virtual, followed by γ∗γ → π0. Tagging either the e+ or e− allows for
the determination of Q2. There are also preliminary data from BESIII covering the range
from 0.3 to 3.1 GeV2 [20]. Calculation of the radiative correction for the BESIII efficiencies
is currently in progress. Fig. 5 shows low-Q2 data collected to date on the spacelike π0 TFF.

The third source of data are from the Dalitz decay π0 → e+e−γ. Although the Dalitz
decay probes the time-like region of the TFF, the “slope” of the yield relative to e+e−
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Figure 4: Measurements and calculations for the neutral pion radiative width.

invariant mass-squared is sensitive to the slope term aπ in Eqn. 1 In the low-q2 limit the
TFF is proportional to,

F (x) ∝ 1 + aπx

where

x =
m2
e+e−

m2
π

The most recent π0 Dalitz decay measurements are from NA62 [21], an analysis of ap-
proximately 1.1 M reconstructed Dalitz decays from K± → π0π±, and from the Mainz
A2 collaboration [22], an analysis of approximately 0.5 M reconstructed Dalitz decays
from γp → π0X at the ∆(1232). The A2 collaboration plans to continue data taking
and expects to obtain an additional 2 M reconstructed events. NA62 and A2 obtained
aπ = .0368(51)stat(25)sys, and aπ = .030(10)total from the analysis of their data, respec-
tively. A compilation of time-like slope parameter measurements is shown in Fig. 6, where
the parameter Λ2 = m2

π/aπ is plotted in the figure.
The PDG gives aπ = .0335± .0031 for the slope parameter, an error of ±9%. The PDG

average is dominated by two results; (i) NA62 and (ii) the result from fitting the CELLO
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Fig. 2. Momentum dependence of the spacelike TFF of ⇡0. The TFF is normalized to its value at F⇡0 (0, 0) and multiplied with Q 2. Data are shown
from CELLO [31] (green triangles (up)), CLEO [32] (blue triangles (down)), BaBar [33] (black squares), Belle [34] (purple stars), and preliminary data
from BESIII (red circles). Error bars indicate the total uncertainties.

Fig. 3. Momentum dependence of the spacelike TFF of ⇡0 for Q 2  4GeV2. Data from CELLO [31] (green triangles (up)), CLEO [32] (blue triangles
(down)), and preliminary data from BESIII (red circles).

Recently, the BESIII Collaboration started to investigate the momentum dependence of pseudoscalar TFFs. Based on
2.93 fb�1 of data collected at

p
s = 3.773GeV with the BESIII detector at the Beijing Electron Positron Collider-II a

preliminary result for the ⇡0 TFF is obtained [35]. As illustrated with red circles in Figs. 2 and 3, the momentum
dependence is studied from 0.3GeV2 up to 3.1GeV2. The preliminary BESIII result extends the CELLO measurement
towards lower values of Q 2, which is important for the hadronic light-by-light scattering calculations for aµ, and it exceeds
its accuracy. In the overlap region with the CLEO measurement at Q 2 � 1.5GeV2 both results show good agreement.

Even though the BESIII measurement uses similar means to suppress radiative effects of QED on the determination of
momentum transfer as the BaBar Collaboration, the preliminary result does not yet take into account radiative effects in
the efficiency corrections. This will be part of the final result, performed based on the full calculations included in the
Ekhara 3.0 Monte Carlo generator.

3.2.2. Results for � ⇤� ! ⌘, ⌘0

The TFFs of ⌘ and ⌘0 have been studied by the CELLO and CLEO Collaborations in the single-tag technique using the
same data discussed in Section 3.2.1. In contrast to the investigations of the ⇡0 TFF several decay modes were considered
to tag the meson production. The CELLO Collaboration provides information on the momentum dependence of the ⌘ TFF
for 0.3  Q 2 [GeV2]  3.4, by combining the three decay modes ⌘ ! � � , ⌘ ! ⇡+⇡�⇡0 and ⌘ ! ⇡+⇡�� [31]. The
combined results are shown with solid green triangles in Figs. 4 and 6. In contrast, the CLEO Collaboration published the
momentum dependence of the TFF of ⌘ separately for each decay channel. Instead of the radiative decay ⌘ ! ⇡+⇡�� the
more abundant decay into three neutral pions was considered [32]. The intervals of momentum transfer differ between the

Figure 5: Momentum dependence of the space-like π0 TFF for Q2 ≤ 4 GeV 2. Data from
CELLO[18] (green triangels (up)), CLEO[19] (blue triangles (down)), and preliminary data
from BESIII[20] (red circles). Fig. taken from Ref. [3]

data points with a VMD form factor[18]. The slope parameter in the CELLO analysis is
obtained from an extrapolation of the data at 0.6 ≤ Q2 ≤ 2.2 to Q2 → 0. The estimated
combined statistical and systematic error on the extrapolation is ±11% for aπ.

Finally, we note that there is a significant data set on the time-like π0 TFF measured
in the reaction e+e− → γ∗ → π0γ → 3γ from CMD-2[23] and SND [24, 25, 26]. However,
there isn’t a simple method to translate the TFF measured in the time-like region into the
space-like region. Analytic continuation methods such as dispersion calculations must be
utilized, hopefully without introducing a significant model dependence [3, 4].

In summary, based on the disagreement of aexpµ with aSMµ , FNAL E989 may soon reach
the 5σ “gold standard” for the discovery of physics beyond the Standard Model. Given the
importance of this possible discovery, we believe that existing experimental constraints on
the low-Q2 region of the π0 TFF are inadequate for a precision measurement of aHLbL−π

0

µ ,
which is the largest component of HLbL.
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Fig. 10. Slope parameter of the timelike ⇡0 TFF from Dalitz decays [50–53]. The gray band shows the current average value and its uncertainty
listed by the PDG [4].

Fig. 11. Slope parameter of the timelike ⌘ transition form factor from Dalitz decays [54–57]. The gray band shows the current average value and
its uncertainty listed by the PDG [4].

close to the �(1232) without any background from other physics processes. The published value of the slope of the TFF of
⇤2

⇡0 = (0.61±0.20) GeV2, where the uncertainty is the total uncertainty, has been determined from 4 ·105 reconstructed
Dalitz decay events. A new measurement has already been announced by the A2 Collaboration, aiming at doubling the
statistical accuracy of the recent result of the NA62 Collaboration [53].

The NA62 result has been obtained from 1.11 · 106 reconstructed Dalitz decays of the ⇡0, yielding a slope parameter
value of ⇤2

⇡0 = 0.495±0.076GeV2. The pions were produced in the Kaon decays K± ! ⇡±⇡0, which were observed from
secondary beams with a central momentum of 74GeV/c at the modified NA48 beam line at CERN. The momenta of the
charged decay products were measured in a magnetic dipole spectrometer using drift chambers, while a LKr calorimeter
was used to determine the energies of photons.

Both, the result of the A2 Collaboration as well as of the NA62 Collaboration consider radiative corrections according
to Ref. [58]. In contrast to previous calculations, the one-photon irreducible contribution at one-loop level, and the virtual
muon loop contribution are included. Also, the terms of order higher than O(m2) are taken into account.

The Dalitz decay of the ⌘ meson can proceed through e+e� as well as µ+µ� pairs. One of the first measurements of the
TFF was carried out with the lepton-G setup at the Institute for High Energy Physics in Serpukhov, Russia [54]. A 33GeV/c
secondary pion beam impinging on a liquid hydrogen target was used to produce the mesons. Charged decay products
are measured in a magnetic spectrometer, while neutral particles are registered in a lead glass calorimeter. The slope
parameter of the ⌘ TFF is determined as ⇤2

⌘ = (0.52 ± 0.13) GeV2 based on 600 reconstructed Dalitz decays ⌘ ! µ+µ�.
More recently, the NA60 Collaboration also determined the TFF slope parameter using ⌘ Dalitz decay with muon

pairs. A first measurement was performed in peripheral In–In collisions at 158AGeV [55]. The muons are detected in a
spectrometer consisting of tracking stations in a toroidal magnetic field, which is placed behind a hadron absorber. After

Figure 6: Slope parameter Λ2 = m2
π/aπ of the timelike π TFF from Dalitz decays. The

gray band shows the current average value and its uncertainty listed by the PDG. Fig.
taken from Ref. [3]

4 Experimental Setup

The proposed TFF measurement will use the PRad setup shown in Fig. 7, but with several
critical improvements and changes that include (i) a flash-ADC based readout system
for the calorimeter, (ii) an additional GEM detector plane, and (iii) a solid target. The
scattered electrons and π0 decay photons will be detected simultaneously in HyCal, the
calorimeter successfully used in the PrimEx-I, PrimEx-II, and PRad measurements

4.1 Beamline and detectors

Just as in the PRad experiment, the scattered electrons will travel through the 5 m long
vacuum chamber with a thin windows to minimize multiple scattering and backgrounds.
The vacuum chamber matches the geometrical acceptance of the calorimeter. The new
GEM plane will be placed about 40 cm upstream of the GEM plane used in PRad, as
shown in Fig. 8. The pair of GEM planes will ensure a high precision measurement of
the GEM detector efficiency, and add a modest tracking capability to further reduce the
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beam-line background.

Figure 7: A schematic layout of the PRad experimental setup in Hall B at Jefferson Lab,
with the electron beam incident from the left. The key beam line elements are shown along
with the two-segment vacuum chamber, and the GEM and HYCAL detector systems.

The principle elements of the experimental apparatus along the beamline are as follows:

• Two stage, large area vacuum chamber with a single thin Al. window at the calorime-
ter end

• Silicon target of thickness 250µm

• A pair of GEM detector planes separated by about 40 cm for coordinate measurement
as well as tracking.

• HyCal calorimeter with high resolution PbWO4 crystal calorimeter insert in the in-
terior, and lead glass blocks on the exterior. The HyCal readout electronics should
be converted from the FASTBUS(!!!!!!) based system used for PrimEx-I, PrimEx-II
and PRad, to the standard JLab flash-ADC based system.

The PRad collaboration has proposed upgrading the HyCal calorimeter to be an all
PbWO4 calorimeter, rather than the hybrid version. In this upgrade the lead-glass modules
would be replaced with new PbWO4 crystals, significantly improving the uniformity of the
electron detection over the entire experimental acceptance. While this upgrade is welcomed
for the proposed TFF measurement, it is not essential. All of the simulations in this
proposal assume the standard (non-upgraded) HyCal.

We note that the precision of the GEM detector efficiency contributed significantly
to the systematic uncertainty of the PRad experiment. A high precision measurement of
the GEM detector efficiency can be achieved by adding a second GEM detector plane.
In this case, each GEM plane can be calibrated with respect to the other GEM plane
instead of relying on the HyCal, minimizing the influence of the HyCal position resolution.
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It will also help reduce various backgrounds in the determination of the GEM efficiency,
such as cosmic backgrounds and the high-energy photon background. In addition, the
tracking capability afforded by the pair of separated GEM planes will allow measurements
of the interaction point coordinate along beamline. This can be used to eliminate various
beam-line backgrounds, such as those generated from the upstream beam halo blocker.
The uncertainty due to the subtraction of the beam-line background, at forward angles, is
one of the dominant uncertainties of PRad. Therefore, the addition of the second GEM
detector plane will reduce the systematic uncertainty contributed by two dominant sources
of uncertainties. Collaborators at UVa have committed to the construction of the second
GEM plane.

New 
GEM

PRad
GEM

HyCal

Vacuum chamber

Figure 8: The placement of the new GEM chamber in the proposed experimental setup for
PRad-II.

Important upgrades are planned (in progress?, completed?) for the Hall-B beam-
line. The window on the Hall-B tagger is being (has been?) replaced with an aluminum
windows which is expected to result in a significant improvement in the beamline vac-
uum, particularly upstream of the target. This will help reduce one of the key sources of
background observed during the PRad experiment. Further, a new beam halo blocker will
be placed upstream of the Hall-B tagger magnet. This will further reduce the beam-line
background critical for access to the lowest angular range and hence the lowest Q2 range
in the experiment.

4.2 Silicon target

Primakoff experiments typically use targets with moderate atomic number (for a reasonable
ratio of Primakoff to coherent production), ground state Jπ = 0+ (to simplify the reaction
mechanism), precisely determined nuclear charge distribution (for calculation of E.M. and
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strong form factors), and targets that are not difficult to handle (for thickness studies and
mounting). Silicon satisfies all of these criteria. Because of the success PrimEx-II had with
data taking on silicon (see fig. 2 ), and the considerable effort that went into calculation
of the coherent and incoherent backgrounds for silicon, we elected to utilize silicon as the
target in the TFF measurement.

The target will be an approximately 250µm thick silicon crystal disk, diameter from
1 to 2 inches, with natural isotopic abundance. This thickness is approximately 0.3 %
radiation length. The amount of n-doping or p-doping in these silicon crystals is effectively
negligible for our purposes. To better understand multiple scattering effects in the data
we will also take calibration data with a 100µm thick silicon target mounted on the target
ladder. Si wafers of this size and thickness are available from several manufacturers.

Electrons passing through crystal radiators produce coherent radiation (peaked at spe-
cific energies) and non-coherent radiation (with characteristic 1/k distribution), and also
experience channeling affects. For this experiment it’s preferable for the Si crystal to be-
have similar to a non-crystalline target. The simplest way to do this is to not align the
principle symmetry axis of the Si crystal, the (1,0,0) crystal orientation, with the beam-
line. We will consider using a Si wafer with (1,1,1) orientation, or a Si wafer with (1,0,0)
orientation and rotate the normal vector to the disk around the beam-line x and y axes by
≈ 45 ◦.

Silviu Dusa at JLab has performed an assessment of target beam heating using the
computational fluid dynamics (CFD) code ANSYS-FLUENT. Fig. 9 shows the calculated
equilibrium target temperature across the central axis of the target assuming a 25 mm
diameter, 25µm thick Si target, and an unrastered 0.55µA, 100µm diameter electron
beam. The figure indicates a modest central temperature rise of ≈ 2◦K. For the proposed
running conditions of TFF, 250µm thick Si and 10 nA beam, beam heating is reduced by
a factor of ≈ 0.2 relative to the CFD calculation shown here. Therefore, we conclude that
target beam heating is not a limiting factor in setting the luminosity of the measurement.

4.3 DAQ trigger

The TFF experiment requires that the original HyCal FASTBUS readout electronics be
replaced with borrowed or new JLab flash-ADC modules. A total of 1,728 channels of
fADC are required to instrument the 1,152 channels of PbWO4 crystal, and 576 channels
of lead-glass blocks. We are in discussions with the Hall B DAQ group as to the best path
forward to realize this requirement.

The DAQ trigger for the proposed TFF experiment will be organized from flash-ADC
energy measurements in each block of HyCal. The trigger schemes under study require
two or three clusters of energy in HyCal, each with energy greater than 0.3 or 0.4 GeV,
and with a total energy sum of 4 GeV or greater. This type of trigger will be able to
effectively select the expected three electromagnetic particles in the final stage of the re-
action (the scattered electron and two decay photons from the forward produced neutral
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Figure 9: Beam heating of a 25 mm diameter, 25 µm thick Si target for a 0.55 µA, 100
µm diameter, unrastered electron beam.

pion). The only significant contamination will be from time-accidental events from either
deep inelastic scattering eA, and/or e−e−-Moller production, both of which are high cross
section processes. However, the good timing resolution of HyCal equipped with the FADC
electronics (∼ 2 ns) will make these out-of-time backgrounds a small part of the total DAQ
trigger rate.

Estimated trigger rates are presented in section 6.

5 Acceptances and resolutions

The proposed experimental setup is sensitive to elecron scattering angles θe larger than
∼ 0.6◦. In this section we present our results for the Primakoff cross section (see Eqn. 2)
calculated using the technique described in Ref. [27]), and with acceptance related to the
θe > 0.5◦ limitation.

Figure 10 shows the Primakoff differential cross section as a function of the scattered
electron energy for Q2 ranges 0-0.3 GeV2 and 0-1.0 GeV2, and constant π0 transition form
factor (Fγ∗γ∗→π0 ≡ 1). The corresponding integrated cross section values are 2.31 nb and
2.36 nb.

Geometric acceptance and reconstruction efficiency for Primakoff production have been
estimated with the GEANT Monte-Carlo package. Simulated events were reconstructed us-
ing a program similar to that used for the HyCal calorimeter in the PrimEx-II experiment.
The selection criteria for reconstructed events to be accepted were: (i) minimum energy
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Figure 10: Primakoff differential cross section integrated over solid angles as a function of
the scattered electron energy for Q2 in the range 0-0.3 GeV2 (red dots), and 0-1.0 GeV2

(black dots) ranges. In this plot the incident electron energy is E0 = 10.5 GeV, and the π0

TFF is taken to be constant, Fγ∗γ∗→π0 ≡ 1

of 0.5 GeV for a particle in the calorimeter (this is the same threshold PrimEx-II used for
HyCal reconstruction); (ii) maximum energy of 4.5 GeV for the scattered electron, as ac-
ceptance drops sharply at this energy (see Fig. 11); (iii) the reconstructed π0s should have
an invariant mass within ± 10 MeV of 135 MeV (this is approximately 3 detector resolution
neither FWHM’s or σ’s. it is actually weighted mean of two σs from double
gaussian fit shown on the fig.); (iv) energy conservation in the detected event within
± 0.5 GeV; (v) γ’s from π0 decay should not overlap with charged particles in the GEM
detector within 2 cm in both the X- and Y -directions. The charged particles can originate
from the same event, or be accidental beam electrons within the 40 ns time acceptance
window. Obtained efficiencies as a function of Mandelstam t and Q2 for the Primakoff π0

electro-production are shown in Figs. 12 and 13. The plots show that the efficiency is very
significant, 30% or higher, for the main region of interest, 0.01GeV 2<Q2< 0.3GeV 2.

The π0 invariant mass resolution σ ∼ 3.3 MeV, and total event energy resolution
σ ∼ 150 MeV are shown in Figs. 14, and 15. The mass resolution is worse than the 2.4 MeV
value obtained in the PrimEx-II analysis because we are using the entire hybrid calorime-
ter, including the lead glass part, whereas PrimEx-II used just the lead-tungstate crystal
insert. The relative Q2 resolution as a function of Q2, ∼ 3 %, is shown in Fig. 16. Man-
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Figure 11: Detection efficiency vs scattered electron energy at an incident electron energy
of E0 = 10.5 GeV

delstam t resolution divided by
√
t is shown in Fig. 17. Figs. 18 and 19 show the resolution

in θπ, the angle between the virtual photon beam momentum ~q direction and the neutral
pion momentum ~kπ direction. This resolution is in the 0.02◦-0.03◦ range, close to the reso-
lution obtained in PrimEx-II. Resolutions of this order are more than adequate to resolve
the Primakoff peak from the coherent background (see Fig. 2). The electron scattering
angle resolution will depend on the target thickness. Fig. 20 shows the scattering angle
resolution for a 250µm thick silicon target as a function of the scattered electron energy.

The resolution roughly follows a
0.024◦

(Ee[GeV ])0.85 dependence, shown by the dashed line in

the figure.
Fig. 21 shows the Primakoff differential cross section integrated over scattered electron

solid angle and energy (within 0.5–4.5 GeV range) as a function of the π0 production angle.
The corresponding simulated π0 yield scaled to the proposed 60 days of running is shown
in Fig. 22. The Primakoff maximum is shifted from 0.02◦ to 0.04◦ due to resolution.

We conclude that the proposed experiment entirely complements the BESIII and CELLO
measurements in covering the low Q2 region with good acceptance and resolution.
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function of π0 production angle
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6 Trigger rates and radiation dose

To estimate trigger rate and radiation dose in the calorimeter we have performed simula-
tions of electromagnetic processes in the target and their effect on HyCal response caused
by the electron beam using GEANT program package.

The main contributions to the background rate are from (i) delta electron production,
and (ii) multiple scattering in the target, the latter causing the incident beam to interact
sometimes with the inner layer of the calorimeter. Bremsstrahlung production also con-
tributes to the background, with a rate smaller than the other two backgrounds. Rates
have been estimated based on the luminosity proposed to PAC 48 in our letter of intent:
25µm silicon target and 100 nA electron beam current. Since the multiple scattering affect
grows slower than linear with increasing target thickness, we tested several combinations
of target thickness and beam current while keeping the product of the two constant to
see how best to optimize the experiment. The main limiting factor for the product is the
channel rate in the inner-most part of HyCal, caused primarily by the scattered incident
electron beam. To keep this contribution at an acceptable level, we plan to increase the
thickness of the tungsten absorber installed in front of the central HyCal crystals from 6 to
15 cm, and expand the transverse size of the absorber from 4× 4 to 6× 6 HyCal modules.
Fig. 23 shows calorimeter module rates for the most background loaded layers as a function
of target thickness and beam current, with the product being held fixed. Even with the
increased absorber thickness the rate in the most inner layer of HyCal is still too high –
more than 2 MHz for the thinnest target, and caused primarily by the scattered incident
beam hitting the central crystals. Therefore, we propose to turn off HV for this layer.
The rate in the second inner layer protected by the enlarged absorber is acceptable, within
250 kHz.

Fig. 24 shows the radiation dose rate for layers in HyCal. For the inner-most layer the
radiation dose is from 8 to 10 rad/hr if not considering the 50µm target, and 4 to 6 rad/hr
for the next four outer layers. According to studies [28, 29] this may result in a 2%–5%
light yield degradation in the module due to the radiation effects.

Fig. 25 shows the calorimeter trigger rate for a simple 4 GeV total energy threshold.
The trigger rate is estimated to be approximately 250 kHz, which is unworkable for the
experiment. For that reason we require the implementation of the more sophisticated
trigger scheme described in section 4.3.

Fig. 26 shows the estimated trigger rate when two or three clusters are required in the
calorimeter, each cluster with energy greater than 0.3 or 0.4 GeV, and a total energy sum
of 4 GeV or greater. Clusters are defined as simple 3 × 3 module areas in HyCal which
may not intersect with each other. In this case the trigger rate reduces to 25 kHz at the
highest and 4 kHz at the lowest, which can be handled by the Hall-B DAQ system.

Using HyCal energy deposition in the trigger requires the gain equalization procedure
to avoid systematics related to the trigger inefficiency. This will be done by placing HyCal
on the transporter and scanning in the low intensity photon beam produced in the photon

24



tagger with the electron beam energy reduced to about 5 GeV. This procedure has been
performed previously during the PrimEx and PRad experiments and takes about 3 days of
beam time and 3 days for placing HyCal on the transporter and back.

In summary, we propose to switch off HV for the inner-most layer in HyCal, increase
the tungsten absorber transverse size by factor of 1.5, and thickness by 2.5. The trigger
should be configured to require two or three clusters of energy in the calorimeter, each with
energy greater than 0.3 or 0.4 GeV, and with a total energy sum requirement of 4 GeV.
Running with a 250µm Si target and 10 nA beam current gives an estimated trigger rate
in the 3.5 to 20 kHz range. The estimated DAQ trigger rates and radiation dose to the
HyCal modules are estimated to be acceptable for running the experiment.

Figure 23: Estimated HyCal module rates. Squares – most inner HyCal layer around the
beamline, circles – the seond inner layer.
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Figure 24: Estimated radiation dose rate per hour. Solid squares – most inner HyCal layer
around the beamline, open squares – the third inner layer (first unshielded layer), open
circles – area outside the third inner layer.

Figure 25: Estimated HyCal trigger rates for the simple total energy sum trigger with the
threshold of 4 GeV
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Figure 26: Estimated trigger rates for events with total energy deposition in HyCal more
than 4 GeV and at least two clusters (top), or three clusters (bottom) found. The minimum
cluster energy is 0.3 GeV (solid squares), or 0.4 GeV (open squares).
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7 Data Rates

7.1 Signal yield

To estimate the integral event rate for the Primakoff events we ran MC simulations with
the following fixed parameters and intervals:

• Target: 250µm silicon

• Beam energy: 10.5 GeV

• Beam current: 10 nA

• Angular range of the scattered electrons: > 0.5◦

• Energy range of the scattered electrons: 0.5÷ 4.5 GeV

• Full range of expected Q2 values up to 1 GeV2

• γs from neutral pion decays should have energy at least 0.5 GeV, and not overlapped
with any charged particle in the GEM detectors

The total Primakoff cross section integrated over the scattered electron energy range of
0.5...4.5 GeV is estimated to be ∆σ = 0.65 · 10−3 µb. With these numbers and sim-
ulated geometrical acceptance, the Primakoff event rate in the proposed experiment is
≈ 1150 events/day or ≈ 69,000 events/60 days. Therefore, for an estimated 60 days of beam
time we will be able to accumulate approximately 60,000 useful events over the Q2 range
from .003 to 0.3 GeV2.

7.2 Background levels

There are two main contributions to the background: electromagnetic and hadronic.
To estimate the backgrounds from electromagnetic processes extensive studies have

been performed: 6×1015 events of the electron beam interacting with the 250µm thick
silicon target have been simulated. This corresponds to about 26.5 hours of 10 nA beam
current. Events were sampled by 40 ns bunches with 2,500 events per bunch. Bunches with
at least 7.5 GeV total energy deposition in the calorimeter and 3 particles each with a
minimum energy of 50 MeV going into the calorimeter acceptance (including the absorber
area) have been recorded for further processing. The selected events have been propagated
through the experimental setup and reconstructed. During reconstruction we assumed that
charged particles (mostly electrons) can be misidentified as neutrals with 1% probability,
which is a reasonable estimation based on our previous experience with the PRad GEM. In
the reconstructed event we selected particles with energy greater than 0.5 GeV, and required
that there should be at least two neutral particles for π0 reconstruction and a third one
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(mimicking the scattered electron) with the total energy of triplet within a ± 1 GeV window
around the beam energy. The result of this background simulation for the invariant mass
of the false π0 candidates is shown in Fig. 27. We put the expected events from Primakoff
production for the same running time, one day of running, on the same plot for comparison.
We note that the calorimeter timing resolution obtained during the PrimEx experiment
was better than 2 ns, which should suppress most of the background obtained with the
±20 ns timing window shown in Fig. 27. The dependence of the number of background
events as a function of the coincidence time window is shown in Fig. 28.

The main hadronic backgrounds are from π0 and ω meson photo-production on the tar-
get (with “forward” ω → π0γ decay), with the incident real photon produced by bremsstrahlung
in the target. To pass the analysis selection criteria these processes must have a comple-
mentary electron that satisfies the energy conservation condition. The electron in the event
could be either an incident beam electron rescattered in the target, or any background elec-
tron that’s accidentally in time and satisfies energy conservation with the π0, i.e. within
3σ of the apparatus energy resolution. The virtual photon beam angle

NEED MORE DETAILS HERE: direct pi0 production parameters:
fig. 2 ∼ 1.0µb from 0 to 1.5 ◦, and ∼ 1.5µb from 0 to 2.4 ◦.

DO WE WANT THIS FIGURE HERE? Fig. ?? shows distribution between electron

29



0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30 35 40 45

coincidence time window (ns)

b
a
c
k
g
ro

u
n
d
 u

n
d
e
r 

π0
 (

a
.u

.)

Figure 28: Dependence of the number of electromagnetic background events underneath
π0 mass peak as a function of the coincidence time window size

and virtual photon beam directions for the accepted Primakoff events.
ω production parameters:

coherent 30ub, incoherent 70ub, total 100ub [30, 31]

8 Cross section normalization

Here we describe any scheme we want to use for normalizing the cross section data.

9 Results from fitting pseudo-data: projected sensitivities

This is where we describe the results from fitting pseudo-data.

10 Summary of the proposed experiment and impact on
studies of fundamental symmetries

This needs to be reworked, it mostly came from the LOI, need many more
details here and deliverables
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The measurement of the π0 TFF through the Primakoff reaction with virtual incident
photons would run using the PRad-II setup in Hall B. Both the scattered electron and
the two decay photons will be detected in HYCAL, with GEMs used for electron tracking.
The proposed measurement has sensitivity to the TFF over a Q2 range from .003 - 0.3
GeV2, allowing a clean determination of the slope and curvature parameters in the TFF,
and complementing the spacelike BESIII and CELLO measurements at Q2 > 0.3 GeV2,
and Dalitz decay measurements in the timelike region. The cross sections are proportional
Γπ0→γγ , the neutral pion decay width, and we will also pursue this as an experimental goal
if feasible. We note that hadronic light-by-light scattering, one of the largest uncertainties
in the Standard Model prediction for muon g−2, critically depends on knowledge of the
pseudo-scalar meson TFFs in the low Q2 region.
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A Nuclear coherent scattering

This is where we describe Sergey’s work on nuclear coherent scattering.
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B Pseudo-scalar pole contribution to (g − 2)µ

The purpose of this appendix is to explain some results relating to the pion pole contri-
bution and workings of the code used in the hadronic light by light calculations. The
requirements to run the code are:

• C++

• CERN Root

• GSL

• Make

B.1 Background

Our ultimate goal is to calculate the pseudoscalar pion-pole contribution aHLbL:π0

µ , which
can be found through the following equation:

aHLbL:π0

µ =
(α
π

) [
aHLbL:π0(1)
µ + aHLbL:π0(2)

µ

]
where α is the fine structure constant. The two terms on the right both have triple integral
representations:

aHLbL:π0(1)
µ =

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτw1(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2

1,−(Q1+Q2)
2)Fπ0γ∗γ∗(−Q2

2, 0)

(11)

aHLbL:π0(2)
µ =

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτw2(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2

1,−Q2
2)Fπ0γ∗γ∗(−(Q1+Q2)

2, 0)

(12)
where w1 and w2 are weighting functions:

w1(Q1, Q2, τ) =

(
−2π

3

)√
1− τ2 Q3

1Q
3
2

Q2
2 +m2

π

I1(Q1, Q2, τ)

w2(Q1, Q2, τ) =

(
−2π

3

)√
1− τ2 Q3

1Q
3
2

(Q1 +Q2)2 +m2
π

I2(Q1, Q2, τ)

The definitions of I1 and I2 are quite complex, so they are omitted for now. Their exact
definitions can be found in the equation appendix at the end of this document, as well as
a table of all relevant constants.

The following figure contains plots of the weighting functions with various fixed values
of Q1 and Q2 while varying τ (note that the y-axis on the right plot is logarithmic):
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The integrals also involve the on-shell transition form factor for the pion. In particular,
we need the lowest meson dominance plus vector parameterization, or LMD+V form factor:

FLMD+V
π0γ∗γ∗

(q21, q
2
2) =

Fπ
3

q21q
2
2(q21 + q22) + h2q

2
1q

2
2 + h5q

2
1q

2
2 + h5(q

2
1 + q22) + h7

(q21 −M2
V1

)(q21 −M2
V2

)(q22 −M2
V1

)(q22 −M2
V2

)
(13)

Descriptions of all relevant constants can be found at the end of the document.

B.2 Pion-Pole Contribution Calculations

In order to calculate the pion pole contribution, we must first compute two triple integrals.
Of course, it would be impossible to do this by hand given the complexity of the integrands,
so we resort to numerical methods. The standard Riemann sum or trapezoid rule algorithms
are not be the best course of action however, since as the number of dimensions d in an
integral increases they run in O(nd). A better algorithm would be Monte Carlo integration,
which runs in O(n) regardless of the number of dimensions, making it well-suited for
high-dimensional integrals. Monte Carlo integration works by evaluating the integrand at
random points in the domain of integration in order to compute the average value of the
function over the domain. This number is then multiplied by the ”volume” of the domain
of integration to produce the final result. A naive algorithm uses uniform sampling over
the whole domain, while more sophisticated algorithms such as MISER and VEGAS use
stratified and importance sampling to place samples in areas which decrease the overall
variance of the result.

Although the upper bounds of integration on Q1 and Q2 are both∞, we do not need to
integrate out this far in practice to get an accurate result. Both of the weighting functions
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approach 0 as Q1, Q2 →∞, so a much smaller upper bound of 20 can be used.
For implementation, GSL provides many optimized Monte Carlo integration algorithms

in C++. Using the VEGAS algorithm with 40 million samples and a momentum cutoff of
20, we obtain the result

aHLbL:π0

µ:LMD+V = 62.9201422692142× 10−11

which agrees with the value calculated by Nyffeler of 62.9× 10−11.

B.3 Low Momentum Expansion

Another topic of interest is the low momentum form factor expansion, which approximates
the LMD+V form factor for sufficiently small Q1 and Q2. The Q6 expansion is:

FQ6(−Q2
1,−Q2

2) =
1

4π2Fπ

[
1− a(Q2

1 +Q2
2) + b(Q4

1 +Q4
2) + cQ2

1Q
2
2

+d(Q6
1 +Q6

2) + e(Q4
1Q

2
2 +Q2

1Q
4
2) + · · ·

] (14)

This expansion is valid in the region Q2
1 < 0.1, Q2

2 < 0.1. Below is a graph of the LMD+V
form factor along with the Q4 and Q6 expansions.

The two expansions are quite accurate in low momentum regions. We can obtain a
measure of how accurate they are by performing the integrals in equations (1) and (2) and
calculating aHLbL:π0

µ using a small momentum cutoff of Q1,2 < 0.1. The following result
used 40 million samples per integral:
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Integration to Q < 0.1 with 40,000,000 samples

Integral 1 (LMD+V): 0.001005460894 Sigma: 1.864345197e-08

Integral 2 (LMD+V): 0.0001717746828 Sigma: 4.577028494e-09

Integral 1 (Q4) : 0.001005481982 Sigma: 1.832570684e-08

Integral 2 (Q4) : 0.000171768857 Sigma: 4.722432529e-09

Integral 1 (Q6) : 0.001005465541 Sigma: 1.846705857e-08

Integral 2 (Q6) : 0.0001717705784 Sigma: 4.358205314e-09

Final LMD+V : 1.475399897e-11

Final Q4 : 1.475419025e-11

Final Q6 : 1.475400577e-11

% Error Q4 = 0.001296464429

% Error Q6 = 4.605865611e-05

The percent error is extremely small, so we can be confident that these expansions
accurately model the LMD+V form factor. Even when we integrate out to the Q < 0.55
region, the Q6 expasion is still reasonably accurate:

Integration to Q < 0.55 with 40,000,000 samples

Integral 1 (LMD+V): 0.03059591231 Sigma: 1.143014661e-06

Integral 2 (LMD+V): 0.001228622807 Sigma: 7.092076856e-08

Integral 1 (Q4) : 0.03445752339 Sigma: 1.29445538e-06

Integral 2 (Q4) : 0.001255706317 Sigma: 7.560896752e-08

Integral 1 (Q6) : 0.0292823835 Sigma: 1.31088181e-06

Integral 2 (Q6) : 0.001222610122 Sigma: 7.34236183e-08

Final LMD+V : 3.98848937e-10

Final Q4 : 4.475849735e-10

Final Q6 : 3.823114535e-10

% Error Q4 = 12.21917171

% Error Q6 = 4.146302504

Additionally, we are interested in the parameters a, b, c, d, e, and the constant Γπ0→γγ′ .
We can find the uncertainty in these values by calculating the partial derivatives of the
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pseudoscalar pion pole contribution aHLbL:π0

µ with respect to each parameter. We can do
this by by using the standard two-sided finite difference algorithm for derivatives:

Let f : R6 → R be a function that takes the parameters a, b, c, d, e,Γπ0→γγ′ as input
and outputs the value of the pseudoscalar pion pole contribution using the Q6 form factor
expansion. If we wanted to find the uncertainty in a, for example, we would need to

calculate
∂f

∂a
, which using the two-sided finite differnce is:

∂f

∂a
≈
f
(
a(1 + p), b, c, d, e,Γ

)
− f

(
a(1− p), b, c, d, e,Γ

)
2ap

where 0 < p << 1 is some small percent offset. In this case, we would choose all parameter
values to be their mean value, as in the table of constants. Ideally we want p to be as
small as possible, but due to the limitations of floating point arithmetic if p is too small
we introduce floating point errors into the calculation. On the other hand, if p is too large
the approximation of the partial derivative becomes less valid. In an attempt to mitigate
these errors, we will calculate the partials for each parameter for a range of percent offsets
and compare them to see if they agree. We find:

Integration up to Q < 0.32 with 10,000,000 samples

Partials - parameters varied by 0.25%

a : -3.3649414139212751e-11

b : 6.5597577850400077e-13

c : 7.5336493834179759e-13

d : -2.2389899845111552e-14

e : -2.5921871988282577e-13

gamma : 0.028048597506709651

Partials - parameters varied by 0.5%

a : -3.4449383778532745e-11

b : 3.4142804377747982e-12

c : 8.8450944603176724e-13

d : 2.8415787365649684e-15

e : -9.0179242866092002e-14

gamma : 0.028048597506709985
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Partials - parameters varied by 0.75%

a : -3.3191362216371211e-11

b : 2.5755926746937237e-12

c : 8.9698494346664814e-13

d : 5.5273532206700047e-13

e : 1.1963893088477835e-13

gamma : 0.028048597506711213

Partials - parameters varied by 1%

a : -3.2643828344676348e-11

b : 2.7937088821432139e-12

c : 7.6711187905363668e-13

d : 2.4753257230670531e-13

e : 3.3237715190804097e-14

gamma : 0.028048597506710987

Partials - parameters varied by 2%

a : -3.3252659401737983e-11

b : 2.5268070693977975e-12

c : 8.0415729114617521e-13

d : 6.3470922586978126e-14

e : 3.0352326917181194e-14

gamma : 0.028048597506710987

We see that the parameters a, b, and Γ have good agreement, while c, d, and e have less
agreement. Increasing the integration bound to Q < 0.55 results in better agreement
among all parameters:

Integration up to Q < 0.55 with 10,000,000 samples

Partials - parameters varied by 0.5%

a : -1.64032569337445e-10

b : 3.38827807205793e-11

c : 1.14428571606979e-11

d : 9.08712120200189e-12

e : 4.35623158169835e-12

gamma : 0.0494522072073776

Partials - parameters varied by 1%

a : -1.64967438673216e-10

b : 3.24854023731518e-11

c : 1.1522291345106e-11
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d : 9.46112561685376e-12

e : 3.93324334449662e-12

gamma : 0.0494522072073796

Partials - parameters varied by 2%

a : -1.63683649020039e-10

b : 3.33407981304216e-11

c : 1.26548343516877e-11

d : 9.09222852041125e-12

e : 4.04912057232516e-12

gamma : 0.0494522072073795

B.4 Code Documentation

The subsections here detail what each file does as well as how to compile and run them.
The files themselves are also documented with comments in the code. There are 5 files in
total:

• functions.h

• main.cpp

• error.cpp

• propagate.cpp

• Makefile

B.4.1 functions.h

This file defines the functions and physical constants needed in the HLbL calculation. Such
functions include the form factors and weighting functions.

B.4.2 main.cpp

This program calculates the value aHLbL:π0

µ . It does this using the VEGAS Monte Carlo
integration algorithm (implemented by GSL) to calculate the relevant integrals.

B.4.3 error.cpp

This program calculates the percentage error of the Q4 and Q6 form factor expansions. The
upper integration bounds on Q1 and Q2 can be changed by altering the value of the limit

variable, and the number of samples used in the integration algorithm can be changed with
the calls variable. Since a total of 6 integrals need to be calculated, the MISER algorithm
(implemented in GSL) is used because it is faster than the VEGAS algorithm.
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B.4.4 propagate.cpp

This program computes the partial derivatives of aHLbL:π0

µ with respect to the parameters
a, b, c, d, e, and Γ using the Q6 expansion. The MISER algorithm is used here since many
integrals need to be calculated. The number of samples can be changed by changing the
samples variable, and the integration bound can be changed with the cutoff variable.

B.4.5 Compiling and Running

To compile all of the code, simply run the command make in the same directory as the
Makefile using the command line. This should generate several files. The important ones
are main, error, and propagate (note that these files don’t have extensions since they are
executables). To run the relevant program, type ./<fileName> into the command line.
For example, to run main.cpp, type ./main into the command line. To remove all of the
generated files, run make clean. This will not affect any of the source files.

B.5 Weighting functions and form factors

The functions involved in the calculations are quite complicated, so the details are provided
here.

B.5.1 Weighting Functions

w1(Q1, Q2, τ) =

(
−2π

3

)√
1− τ2 Q3

1Q
3
2

Q2
2 +m2

π

I1(Q1, Q2, τ)

w2(Q1, Q2, τ) =

(
−2π

3

)√
1− τ2 Q3

1Q
3
2

(Q1 +Q2)2 +m2
π

I2(Q1, Q2, τ)

I1(Q1, Q2, τ) = X(Q1, Q2, τ)
[
8P1P2(Q1 ·Q2)− 2P1P3(Q

4
2/m

2
µ − 2Q2

2) + 4P2P3Q
2
1 − 4P2

−2P1(2−Q2
2/m

2
µ + 2(Q1 ·Q2)/m

2
µ)− 2P3(4 +Q2

1/m
2
µ − 2Q2

2/m
2
µ) + 2/m2

µ

]
−2P1P2(1 + (1−Rm1)(Q1 ·Q2)/m

2
µ) + P1P3(2− (1−Rm1)Q

2
2/m

2
µ)

+P2P3(2 + (1−Rm1)
2(Q1 ·Q2)/m

2
µ) + P1(1−Rm1)/m

2
µ + 3P3(1−Rm1)/m

2
µ

I2(Q1, Q2, τ) = X(Q1, Q2, τ)
[
4P1P2(Q1 ·Q2) + 2P1P3Q

2
2 − 2P1 + 2P2P3Q

2
1 − 2P2 − 4P3 − 4/m2

µ

]
−2P1P2 − 3P1(1−Rm2)/(2m

2
µ)− 3P2(1−Rm1)/(2m

2
µ)− P3(2−Rm1 −Rm2)/(2m

2
µ)

+P1P3(2 + 3(1−Rm2)Q
2
2/(2m

2
µ) + (1−Rm2)

2(Q1 ·Q2)/(2m
2
µ))

+P2P3(2 + 3(1−Rm1)Q
2
1/(2m

2
µ) + (1−Rm1)

2(Q1 ·Q2)/(2m
2
µ))
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Q2
3 = Q2

1 + 2Q1 ·Q2 +Q2
2

Q1 ·Q2 = Q1Q2τ

Pi =
1

Q2
i

, i = 1, 2, 3

X(Q1, Q2, τ) =
1

Q1Q2x
arctan

(
zx

1− zτ

)
x =

√
1− τ2

z =
Q1Q2

4m2
µ

(1−Rm1)(1−Rm2)

Rmi =

√
1 +

4m2
µ

Q2
i

, i = 1, 2

B.5.2 Form Factors

FLMD+V
π0γ∗γ∗

(q21, q
2
2) =

Fπ
3

q21q
2
2(q21 + q22) + h2q

2
1q

2
2 + h5(q

2
1 + q22) + h7

(q21 −M2
V1

)(q21 −M2
V2

)(q22 −M2
V1

)(q22 −M2
V2

)

FQ4(−Q2
1,−Q2

2) =

√
4Γπ0→γγ′

πα2m3
π

[
1− a(Q2

1 +Q2
2) + b(Q4

1 +Q4
2) + cQ2

1Q
2
2 + · · ·

]

FQ6(−Q2
1,−Q2

2) =

√
4Γπ0→γγ′

πα2m3
π

[
1−a(Q2

1+Q
2
2)+b(Q

4
1+Q

4
2)+cQ

2
1Q

2
2+d(Q6

1+Q
6
2)+e(Q

4
1Q

2
2+Q

2
1Q

4
2)+· · ·

]
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B.6 Constants

Name Symbol Value Units

Fine Structure Constant α 0.0072973525693 -

Pion Mass mπ 0.1349768 GeV/c2

Muon Mass mµ 0.1056583745 GeV/c2

Pion Decay Constant Fπ 0.0924 GeV

Vector Meson Mass 1 MV1 0.77549 GeV

Vector Meson Mass 2 MV2 1.465 GeV

LMD+V Parameter 1 h2 -10.634883404844444 GeV2

LMD+V Parameter 2 h5 6.93 GeV4

LMD+V Parameter 3 h7 -14.827668978756119 GeV6

TFF Expansion Param 1 a 1.6613939123981294∗ GeV−2

TFF Expansion Param 2 b 2.7619453491551749∗ GeV−4

TFF Expansion Param 3 c 3.259027816403921∗ GeV−6

TFF Expansion Param 4 d -4.59258 GeV−6

TFF Expansion Param 5 e -5.58268 GeV−6

? Γ and Γπ0→γγ′ 7.7291993× 10−9 GeV

∗ - The values for the parameters a, b, and c in the table are approximate. Their exact
forms are:

a =
1

M2
V1

+
1

M2
V2

+
h5
h7

b =
1

M4
V1

+
1

M4
V2

+
1

M2
V1
M2
V2

+
h5
h7

(
1

M2
V1

+
1

M2
V2

)

c =

(
1

M2
V1

+
1

M2
V2

)2

+
h2
h7

+ 2
h5
h7

(
1

M2
V1

+
1

M2
V2

)
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