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Abstract
We propose a measurement of the π0 space-like transition form factor (TFF) through

the Primakoff reaction with virtual incident photons. The experiment will run using the
PRad setup in Hall B using a 250µm thick silicon target, and a 10.5 GeV electron beam
with 10 nA current. The measurement has sensitivity to two fundamental observables in
low-energy, strong-interaction physics, (i) the π0 radiative decay width Γπ0→γγ , and (ii)
the π0 electromagnetic transition radius. The measurement will determine Γπ0→γγ with
an estimated uncertainty of ± 0.7(1.4) % stat (sys), to be compared with the combined
PrimEx-I and PrimEx-II result of ± 0.7(1.3) % [1], and the π0 electromagnetic transition
radius with an estimated uncertainty of 3 %. One of the largest uncertainties in the Stan-
dard Model prediction for the muon anomalous magnetic moment is hadronic light-by-light
scattering, which critically depends on knowledge of the pseudo-scalar meson TFFs in the
low-Q2 region. By measuring the π0 TFF over the region Q2 ≈ .003 to 0.3 GeV2 where no
data currently exists, the proposed experiment will constrain approximately 65 % of the
π0-pole contribution to HLbL with an estimated uncertainty of 6 %.
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1 Introduction and physics motivation

Measurements of the neutral pion transition form factor (TFF) in the low-Q2 space-like
region can determine two key observables in low-energy strong-interaction physics, the neu-
tral pion radiative width Γπ0→γγ , and the neutral pion transition radius. These observables
provide important test points for calculations based on fundamental symmetries and chiral
perturbation theory, [2], as well as providing important constraints for hadronic corrections
to the muon anamalous magnetic moment [3, 4].

Primakoff π0 electro-production can be used to measure the space-like π0 electromag-
netic TFF. Fig. 1 shows the Feynman diagram for the interaction vertex. We define Q2

1
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where aπ and bπ are the linear and curvature terms in the TFF, respectively, and cπ is a
cross term in the expansion. The mean square electromagnetic transition radius of the π0

is given by,

< r2 >π0= 6
aπ
m2
π

(2)

The cross section for virtual Primakoff production has been given by Hadjimichael and
Fallieros [5],
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and η is given by
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4
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Γπ0→γγ (5)
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In Eqn. 3 FN (t) is the nuclear electromagnetic form factor, θe is the electron scattering
angle, kπ is the pion momentum, and θπ is the angle between the virtual photon direction ~q
and the neutral pion direction ~kπ. This expression for the cross section in similar to that for
the real Primakoff effect, with the notable exception of the form factor Fγ∗γ∗→π0(−Q2, t)
which is of interest here. We have verified by direct evaluation that the virtual Primakoff
cross section given in Eqn. 3 by Hadjimichael and Fallieros is equivalent to the electropro-
duction cross section given by Donnelly and Cotanch [6].

The γ∗γ∗π0 vertex has been studied theoretically in VMD and ChPT based models,
[7, 8, 9], as well as those based on treatments of quark substructure [10, 11, 12]. In light
of the recent result for muon g−2, there has been considerable theoretical interest in the
pseudo-scalar TFFs and how they impact hadronic corrections to (g−2)µ (see discussion in
section 2). Most recently lattice calculations [13, 14] have been developed with sufficient
accuracy to complement and test predictions for hadronic corrections to (g−2)µ based on
analytical approaches.

The most significant background to consider in Primakoff experiments is π0 coherent
photo-production [1]. Fig. 2 shows an example of this from the PrimEx-II 28Si data. The
prominent peak at lowest angle is Primakoff production, and the peak at ≈ 1.3o is nu-
clear coherent production. The methodology for extracting the Primakoff signal from the
coherent and incoherent backgrounds is well established [1]. Briefly stated, the shapes
of the Primakoff and coherent angular distributions are well constrained, the former by
QED and the nuclear electromagnetic form factor, and the latter by the t-dependence of
the strong nuclear form factor and the pion-nucleus interaction. Therefore, the analysis
effectively reduces to fitting the π0 angular distribution with the squared sum of Primakoff
and coherent amplitudes, with the coherent amplitude multiplied by an arbitrary com-
plex phase. The complex phase accounts for the phase difference between the Coulomb
amplitude (Primakoff), and the strong amplitude (coherent).

In support of this proposal S. Gevorkyan, the PrimEx theoretical collaborator, has
developed a generalization of the coherent amplitude for the case of electro-production.
Details of the calculation are given in Appendix A. For the TFF measurement we plan to
take data on a 28Si target, which will allow us to capitalize on the theoretical effort invested
by PrimEx in the calculation of coherent and incoherent reactions on 28Si. In the low-Q2

range of the proposed TFF measurement the photo-production and electro-production
coherent angular distributions are similar in shape.

Finally, we note that a proposal to measure the pseudo-scalar TFFs was developed by
the PrimEx Collaboration over 20 years ago. The proposal was included in the original
JLab white paper as a key experiment driving the 12 GeV energy upgrade [15, 16].
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Figure 1: Feynman diagram for the virtual Primakoff reaction

2 Hadronic corrections to the muon anomalous magnetic
moment

Recently there has been considerable interest in measurements of the pseudo-scalar me-
son TFFs as a means to constrain hadronic corrections to the muon anomalous magnetic
moment[4]. Defining aµ = (g − 2)µ/2 as the deviation of the magnetic moment from the
value g=2 for a point-like spin-1/2 Dirac particle, the experimental measurement [17] and
Standard Model (SM) prediction [4] for aµ are given by,

aexpµ = 116 592 061 (41)× 10−11 (6)

aSMµ = 116 591 810 (43)× 10−11 (7)

which gives a 4.2σ deviation between experiment and Standard Model. As of this writing
FNAL E989 continues to take data on (g − 2)µ, and data taking is planned at J-PARC
in the near future. Therefore, we can expect a significant reduction in the experimental
error in aµ over the next several years. For this reason comprehensive theoretical and
experimental efforts are underway to reduce the Standard Model uncertainty in aµ.

There are four classes of corrections to the SM prediction for aSMµ : (i) higher-level QED
diagrams to order α12, (ii) electro-weak corrections at 3-loop level, (iii) hadronic vacuum
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Figure 2: 28Si data from the PrimEx-II analysis. The curves show the Primakoff signal
(brown), and the coherent (blue), interference (magenta) and incoherent (green) back-
grounds.
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polarization, and (iv) hadronic light-by-light scattering. Theoretical uncertainties in the
first two processes, QED and electro-weak corrections, are understood to be small, ±1 ×
10−12 and ±1×10−11, respectively, and do not limit the interpretation of the experimental
results [4].

The third class of correction, hadronic vacuum polarization HVP, can be calculated
using data driven techniques using experimental data. In the data-driven approach the
lowest order HVP is given by

∫
K(s)R(s)/s2 ds, where

√
s is the C.M. energy of the e+e−

system, K(s) is a known kinematic factor, and R(s) is given by,

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(8)

The evaluation of HVP currently stands at aHV Pµ = 6845 ± 40 × 10−11 [4]. As new mea-
surements of e+e− → X improve the determination of R, the error in HVP is expected to
significantly decrease.

The fourth class of correction, and arguably the most model-dependent in its evaluation,
is hadronic light-by-light scattering, HLbL. Since HLbL is suppressed by a factor αEM
relative to HVP, aHLbLµ is roughly two orders of magnitude smaller than aHV Pµ . Unlike
HVP, HLbL cannot be reduced to purely data-driven forms, and must be evaluated using
experimental data and hadronic models [3, 4]. The evaluation of HLbL currently stands
at aHLbLµ = 92 ± 19 × 10−11 [4]. While aHLbLµ ≈ αEM × aHV Pµ , the uncertainties in HLbL
and HVP are of comparable size.

The single largest contribution to HLbL is from the coupling of two space-like photons
to the pseudo-scalar mesons π0, η and η′, with the coupling parameterized by the pseudo-
scalar TFFs. TFF data are used as input for the evaluation of the pseudo-scalar pole
contribution to HLbL, and for the validation of hadronic models used to calculate the
TFFs. Evaluation of the pseudo-scalar pole contribution to HLbL currently stands at
aHLbL−poleµ = 93.8 ± 4.0 × 10−11 [4], approximately equal to the summed total for HLbL.

Due to the low mass of the π0 relative to the η and η′, approximately 67% of aHLbL−poleµ

comes from the π0-pole.
Details for calculating aHLbL−poleµ are presented in Appendix B. Also presented in the

appendix are the computational tools we’ve used for the evaluation of aHLbL−π
0

µ . The

expression for aHLbL−π
0

µ is given by the following equation, [18]

aHLbL−π
0

µ =
(α
π

) [
aHLbL:π0(1)
µ + aHLbL:π0(2)

µ

]
(9)

where the two terms on the right must be evaluated from triple integrals over the TFFs,

aHLbL:π0(1)
µ =

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτw1(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2

1,−(Q1+Q2)2)Fπ0γ∗γ∗(−Q2
2, 0)

(10)
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aHLbL:π0(2)
µ =

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτw2(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2

1,−Q2
2)Fπ0γ∗γ∗(−(Q1+Q2)2, 0)

(11)
with Q1 =

√
Q2

1 and Q2 =
√
Q2

2, and weighting functions w1 and w2 given in Appendix B.

Fig. 3 shows aHLbL−π
0

µ as a fraction of its asymptotic limit versus the momentum

cutoff in Eqns. 10 and 11. The figure indicates that aHLbL−π
0

µ saturates with increasing
momentum cutoff, and at a momentum cutoff of Q1,2 = 0.55 GeV, corresponding to Q2 =

0.3 GeV 2, aHLbL−π
0

µ is at 65 % of the asymptotic limit.
The TFF used for this study is the “LMD+V” (Lowest Meson Dominance + Vector

meson) TFF, which is almost universally used in calculations of aHLbL−poleµ [18]. The
LMD+V TFF is the minimal hadronic approximation to Green’s functions in large-Nc

QCD, while also satisfying the necessary Brodsky-Lepage behaviour at high Q2,

lim
Q2→∞

Fγ∗γ∗→π0(−Q2, 0) = −2Fπ
Q2

+O
( 1

Q4

)
(12)

The expression for the LMD+V TFF is presented in Eqn. 21 of Appendix B.

Figure 3: aHLbL−π
0

µ as a fraction of the asymptotic limit as a function of the momentum
cut-off in Q1 = Q2.

3 Previous Measurements of the Neutral Pion TFF in the
space-like region

There are three sources of data for constraining the π0 TFF in the low-Q2 space-like region.
Arguably the most important data point is the radiative width of the neutral pion, Γπ0→γγ ,
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which fixes the normalization of Fγ∗γ∗→π0(0, 0). Results for the π0 radiative width were
recently published in Science [1]. Combining the PrimEx-I and PrimEx-II results gives

Γπ0→γγ = 7.802± 0.052(stat)± 0.105(sys) eV

Experimental results for Γπ0→γγ from PrimEx and previous measurements are shown in
Fig. 4. The PrimEx result agrees with the Chiral Anomaly prediction, and deviates from
NLO and NNLO corrections to the anomaly by two standard deviations.
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Figure 4: Measurements and calculations for the neutral pion radiative width.

The second source of data are from collider measurements, where γ∗γ → π0. The lowest
Q2 published measurements are by CELLO [19] and CLEO [20] in the Q2 ranges 0.6-2.2
GeV2 and 1.6-8.0 GeV2, respectively. These measurements used the reaction e+e− →
e+e−π0, where two photons are radiated by the colliding e+e− beams, one photon close to
real and the second virtual, followed by γ∗γ → π0. Tagging either the e+ or e− allows for
the determination of Q2. There are also preliminary data from BESIII covering the range
from 0.3 to 3.1 GeV2 [21]. Radiative corrections for the BESIII data have not yet been
finalized. Fig. 5 shows low-Q2 data collected to date on the spacelike π0 TFF.
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Fig. 2. Momentum dependence of the spacelike TFF of ⇡0. The TFF is normalized to its value at F⇡0 (0, 0) and multiplied with Q 2. Data are shown
from CELLO [31] (green triangles (up)), CLEO [32] (blue triangles (down)), BaBar [33] (black squares), Belle [34] (purple stars), and preliminary data
from BESIII (red circles). Error bars indicate the total uncertainties.

Fig. 3. Momentum dependence of the spacelike TFF of ⇡0 for Q 2  4GeV2. Data from CELLO [31] (green triangles (up)), CLEO [32] (blue triangles
(down)), and preliminary data from BESIII (red circles).

Recently, the BESIII Collaboration started to investigate the momentum dependence of pseudoscalar TFFs. Based on
2.93 fb�1 of data collected at

p
s = 3.773GeV with the BESIII detector at the Beijing Electron Positron Collider-II a

preliminary result for the ⇡0 TFF is obtained [35]. As illustrated with red circles in Figs. 2 and 3, the momentum
dependence is studied from 0.3GeV2 up to 3.1GeV2. The preliminary BESIII result extends the CELLO measurement
towards lower values of Q 2, which is important for the hadronic light-by-light scattering calculations for aµ, and it exceeds
its accuracy. In the overlap region with the CLEO measurement at Q 2 � 1.5GeV2 both results show good agreement.

Even though the BESIII measurement uses similar means to suppress radiative effects of QED on the determination of
momentum transfer as the BaBar Collaboration, the preliminary result does not yet take into account radiative effects in
the efficiency corrections. This will be part of the final result, performed based on the full calculations included in the
Ekhara 3.0 Monte Carlo generator.

3.2.2. Results for � ⇤� ! ⌘, ⌘0

The TFFs of ⌘ and ⌘0 have been studied by the CELLO and CLEO Collaborations in the single-tag technique using the
same data discussed in Section 3.2.1. In contrast to the investigations of the ⇡0 TFF several decay modes were considered
to tag the meson production. The CELLO Collaboration provides information on the momentum dependence of the ⌘ TFF
for 0.3  Q 2 [GeV2]  3.4, by combining the three decay modes ⌘ ! � � , ⌘ ! ⇡+⇡�⇡0 and ⌘ ! ⇡+⇡�� [31]. The
combined results are shown with solid green triangles in Figs. 4 and 6. In contrast, the CLEO Collaboration published the
momentum dependence of the TFF of ⌘ separately for each decay channel. Instead of the radiative decay ⌘ ! ⇡+⇡�� the
more abundant decay into three neutral pions was considered [32]. The intervals of momentum transfer differ between the

Figure 5: Momentum dependence of the space-like π0 TFF for Q2 ≤ 4 GeV 2. Data from
CELLO[19] (green triangels (up)), CLEO[20] (blue triangles (down)), and preliminary data
from BESIII[21] (red circles). Fig. taken from Ref. [3]

The third source of data are from the Dalitz decay π0 → e+e−γ. Although the Dalitz
decay probes the time-like region of the TFF, the “slope” of the yield relative to e+e−

invariant mass-squared is sensitive to the slope term aπ in Eqn. 1. In the low-q2 limit the
TFF is proportional to,

F (x) ∝ 1 + aπx

where

x =
m2
e+e−

m2
π

The most recent π0 Dalitz decay measurements are from NA62 [22], an analysis of ap-
proximately 1.1 M reconstructed Dalitz decays from K± → π0π±, and from the Mainz
A2 collaboration [23], an analysis of approximately 0.5 M reconstructed Dalitz decays
from γp → π0X at the ∆(1232). The A2 collaboration plans to continue data taking
and expects to obtain an additional 2 M reconstructed events. NA62 and A2 obtained
aπ = .0368(51)stat(25)sys, and aπ = .030(10)total from the analysis of their data, respec-
tively. A compilation of time-like slope parameter measurements is shown in Fig. 6, where
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the parameter Λ2 = m2
π/aπ is plotted in the figure.

The PDG gives aπ = .0335± .0031 for the slope parameter, an error of ±9%. The PDG
average is dominated by two results; (i) NA62 and (ii) the result from fitting the CELLO
form factor data points with a VMD form factor[19]. The slope parameter is obtained by
extrapolating the data at 0.6 ≤ Q2 ≤ 2.2 to Q2 → 0. The estimated combined statistical
and systematic error on the extrapolation is ±11% for aπ.

Finally, we note that there is a significant data set on the time-like π0 TFF measured
in the reaction e+e− → γ∗ → π0γ → 3γ from CMD-2[24] and SND [25, 26, 27]. However,
there isn’t a simple method to translate the TFF measured in the time-like region into the
space-like region. Analytic continuation methods such as dispersion calculations must be
utilized, hopefully without introducing a significant model dependence [3, 4].

In summary, based on the disagreement of aexpµ with aSMµ , FNAL E989 may soon reach
the 5σ “gold standard” for the discovery of physics beyond the Standard Model. Given the
importance of this possible discovery, we believe existing experimental constraints on the
low-Q2 region of the π0 TFF are inadequate for a precision measurement of aHLbL−π

0

µ , the
largest component of HLbL.I. Danilkin, C.F. Redmer and M. Vanderhaeghen / Progress in Particle and Nuclear Physics 107 (2019) 20–68 35

Fig. 10. Slope parameter of the timelike ⇡0 TFF from Dalitz decays [50–53]. The gray band shows the current average value and its uncertainty
listed by the PDG [4].

Fig. 11. Slope parameter of the timelike ⌘ transition form factor from Dalitz decays [54–57]. The gray band shows the current average value and
its uncertainty listed by the PDG [4].

close to the �(1232) without any background from other physics processes. The published value of the slope of the TFF of
⇤2

⇡0 = (0.61±0.20) GeV2, where the uncertainty is the total uncertainty, has been determined from 4 ·105 reconstructed
Dalitz decay events. A new measurement has already been announced by the A2 Collaboration, aiming at doubling the
statistical accuracy of the recent result of the NA62 Collaboration [53].

The NA62 result has been obtained from 1.11 · 106 reconstructed Dalitz decays of the ⇡0, yielding a slope parameter
value of ⇤2

⇡0 = 0.495±0.076GeV2. The pions were produced in the Kaon decays K± ! ⇡±⇡0, which were observed from
secondary beams with a central momentum of 74GeV/c at the modified NA48 beam line at CERN. The momenta of the
charged decay products were measured in a magnetic dipole spectrometer using drift chambers, while a LKr calorimeter
was used to determine the energies of photons.

Both, the result of the A2 Collaboration as well as of the NA62 Collaboration consider radiative corrections according
to Ref. [58]. In contrast to previous calculations, the one-photon irreducible contribution at one-loop level, and the virtual
muon loop contribution are included. Also, the terms of order higher than O(m2) are taken into account.

The Dalitz decay of the ⌘ meson can proceed through e+e� as well as µ+µ� pairs. One of the first measurements of the
TFF was carried out with the lepton-G setup at the Institute for High Energy Physics in Serpukhov, Russia [54]. A 33GeV/c
secondary pion beam impinging on a liquid hydrogen target was used to produce the mesons. Charged decay products
are measured in a magnetic spectrometer, while neutral particles are registered in a lead glass calorimeter. The slope
parameter of the ⌘ TFF is determined as ⇤2

⌘ = (0.52 ± 0.13) GeV2 based on 600 reconstructed Dalitz decays ⌘ ! µ+µ�.
More recently, the NA60 Collaboration also determined the TFF slope parameter using ⌘ Dalitz decay with muon

pairs. A first measurement was performed in peripheral In–In collisions at 158AGeV [55]. The muons are detected in a
spectrometer consisting of tracking stations in a toroidal magnetic field, which is placed behind a hadron absorber. After

Figure 6: Slope parameter Λ2 = m2
π/aπ of the timelike π TFF from Dalitz decays. The

gray band shows the current average value and its uncertainty listed by the PDG. Fig.
taken from Ref. [3]
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4 Experimental Setup

The proposed TFF measurement will use the PRad setup shown in Fig. 7, but with several
critical improvements and changes that include (i) a flash-ADC based readout system
for the calorimeter, (ii) an additional GEM detector plane, and (iii) a solid target. The
scattered electrons and π0 decay photons will be detected simultaneously in HyCal, the
calorimeter successfully used in the PrimEx-I, PrimEx-II, and PRad measurements

4.1 Beamline and detectors

Just as in the PRad experiment, the scattered electrons will travel through the 5 m long
vacuum chamber with thin windows to minimize multiple scattering and backgrounds. The
vacuum chamber matches the geometrical acceptance of the calorimeter. The new GEM
plane will be placed about 40 cm upstream of the GEM plane used in PRad, as shown in
Fig. 8. The pair of GEM planes will ensure a high precision measurement of the GEM
detector efficiency, and add a modest tracking capability to further reduce the beam-line
background.

Figure 7: A schematic layout of the PRad experimental setup in Hall B at Jefferson Lab,
with the electron beam incident from the left. The key beam line elements are shown along
with the two-segment vacuum chamber, and the GEM and HYCAL detector systems.

The principle elements of the experimental apparatus along the beamline are as follows:

• Two stage, large area vacuum chamber with a single thin Al. window at the calorime-
ter end

• Silicon target of thickness 250µm

• A pair of GEM detector planes separated by about 40 cm for coordinate measurement
as well as tracking.
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• HyCal calorimeter with high resolution PbWO4 crystal calorimeter insert in the in-
terior, and lead glass blocks on the exterior. The HyCal readout electronics should
be converted from the FASTBUS based system used for PrimEx-I, PrimEx-II and
PRad, to the standard JLab flash-ADC based system.

The PRad collaboration has proposed upgrading the HyCal calorimeter to be an all
PbWO4 calorimeter, rather than the hybrid version. In this upgrade the lead-glass modules
would be replaced with new PbWO4 crystals, significantly improving the uniformity of the
electron detection over the entire experimental acceptance. While this upgrade is welcomed
for the proposed TFF measurement, it is not essential. All of the simulations in this
proposal assume the standard (non-upgraded) HyCal.

We note that the precision of the GEM detector efficiency contributed significantly
to the systematic uncertainty of the PRad experiment. A high precision measurement of
the GEM detector efficiency can be achieved by adding a second GEM detector plane.
In this case, each GEM plane can be calibrated with respect to the other GEM plane
instead of relying on the HyCal, minimizing the influence of the HyCal position resolution.
It will also help reduce various backgrounds in the determination of the GEM efficiency,
such as cosmic backgrounds and the high-energy photon background. In addition, the
tracking capability afforded by the pair of separated GEM planes will allow measurements
of the interaction point coordinate along beamline. This can be used to eliminate various
beam-line backgrounds, such as those generated from the upstream beam halo blocker.
The uncertainty due to the subtraction of the beam-line background, at forward angles, is
one of the dominant uncertainties of PRad. Therefore, the addition of the second GEM
detector plane will reduce the systematic uncertainty contributed by two dominant sources
of uncertainties. Collaborators at UVa have committed to the construction of the second
GEM plane.

Important upgrades are in progress for the Hall-B beamline. The window on the Hall-
B tagger will be replaced with an aluminum window, which is expected to result in a
significant improvement in the beamline vacuum, particularly upstream of the target. This
will help reduce one of the key sources of background observed during the PRad experiment.
Further, a new beam halo blocker will be placed upstream of the Hall-B tagger magnet.
This will further reduce the beam-line background critical for access to the lowest angular
range and hence the lowest Q2 range in the experiment.

4.2 Silicon target

Primakoff experiments typically use targets with moderate atomic number (for a reasonable
ratio of Primakoff to coherent production), ground state Jπ = 0+ (to simplify the reaction
mechanism), precisely determined nuclear charge distribution (for calculation of E.M. and
strong form factors), and targets that are not difficult to handle (for thickness studies and
mounting). Silicon satisfies all of these criteria. Because of the success PrimEx-II had with
data taking on silicon (see fig. 2 ), and the considerable effort that went into calculation
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Figure 8: The placement of the new GEM chamber in the proposed experimental setup for
PRad-II.

of the coherent and incoherent backgrounds for silicon, we elected to utilize silicon as the
target in the TFF measurement.

The target will be an approximately 250µm thick silicon crystal disk, diameter from
1 to 2 inches, with natural isotopic abundance. This thickness is approximately 0.3 %
radiation length. The amount of n-doping or p-doping in these silicon crystals is effectively
negligible for our purposes. To better understand multiple scattering effects in the data
we will also take calibration data with a 100µm thick silicon target mounted on the target
ladder. Si wafers of this size and thickness are available from several manufacturers.

Electrons passing through crystal radiators produce coherent radiation (peaked at spe-
cific energies) and non-coherent radiation (with characteristic 1/k distribution). There are
also channeling affects in electron transport. For this experiment it’s preferable for the Si
crystal to behave as a non-crystalline target. The simplest way to do this is to not align the
principle symmetry axis of the Si crystal, the (1,0,0) crystal orientation, with the beamline.
We can also consider using a Si wafer with (1,1,1) orientation, or a Si wafer with (1,0,0)
orientation and rotate the normal vector to the disk around the beam-line x and y axes by
≈ 45 ◦.

Silviu Dusa at JLab has performed an assessment of target beam heating using the
computational fluid dynamics (CFD) code ANSYS-FLUENT. Fig. 9 shows the calculated
equilibrium target temperature across the central axis of the target assuming a 25 mm
diameter, 25µm thick Si target, and an unrastered 0.55µA, 100µm diameter electron
beam. The figure indicates a modest central temperature rise of ≈ 2◦K. For the proposed
running conditions of TFF, 250µm thick Si and 10 nA beam, beam heating is reduced by
a factor of ≈ 0.2 relative to the CFD calculation shown here. Therefore, we conclude that
target beam heating is not a limiting factor in setting the luminosity of the measurement.
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Figure 9: Beam heating of a 25 mm diameter, 25 µm thick Si target for a 0.55 µA, 100
µm diameter, unrastered electron beam.

4.3 DAQ trigger

The TFF experiment requires that the original HyCal FASTBUS readout electronics be
replaced with borrowed or new JLab flash-ADC modules. A total of 1,728 channels of
fADC are required to instrument the 1,152 channels of PbWO4 crystal, and 576 channels
of lead-glass blocks. We are in discussions with the Hall B DAQ group as to the best path
forward to realize this requirement.

The DAQ trigger for the proposed TFF experiment will be organized from flash-ADC
energy measurements in each block of HyCal. The trigger schemes under study require
two or three clusters of energy in HyCal, each cluster with energy greater than 0.3 or
0.4 GeV, and a total energy sum of 4 GeV or greater. This type of trigger will be able
to effectively select the expected three electromagnetic particles in the final stage of the
reaction (the scattered electron and two decay photons from the forward produced neutral
pion). The only significant contamination will be from time-accidental events from either
deep inelastic scattering eA, and/or e−e−-Moller production, both of which are high cross
section processes. However, the good timing resolution of HyCal equipped with the FADC
electronics (∼ 2 ns) will make these out-of-time backgrounds a small part of the total DAQ
trigger rate.

Estimated trigger rates are presented in section 6.
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5 Acceptances and resolutions

The proposed experimental setup is sensitive to elecron scattering angles θe larger than
∼ 0.6◦. In this section we present our results for the Primakoff cross section (see Eqn. 3)
calculated using the technique described in Ref. [28]), and with acceptance related to the
θe > 0.5◦ limitation.

Figure 10 shows the Primakoff differential cross section as a function of the scattered
electron energy for Q2 ranges 0-0.3 GeV2 and 0-1.0 GeV2, and constant π0 transition form
factor (Fγ∗γ∗→π0 ≡ 1). The corresponding integrated cross section values are 2.31 nb and
2.36 nb.
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Figure 10: Primakoff differential cross section integrated over solid angles as a function of
the scattered electron energy for Q2 in the range 0-0.3 GeV2 (red dots), and 0-1.0 GeV2

(black dots) ranges. In this plot the incident electron energy is E0 = 10.5 GeV, and the π0

TFF is taken to be constant, Fγ∗γ∗→π0 ≡ 1

Geometric acceptance and reconstruction efficiency for Primakoff production have been
estimated with the GEANT Monte-Carlo package. Simulated events were reconstructed
using a program similar to that used for the HyCal calorimeter in the PrimEx-II exper-
iment. The selection criteria for reconstructed events to be accepted were: (i) minimum
energy of 0.5 GeV for a particle in the calorimeter (this is the same threshold PrimEx-II
used for HyCal reconstruction); (ii) maximum energy of 4.5 GeV for the scattered electron,
as acceptance drops sharply at this energy (see Fig. 11); (iii) the reconstructed π0s should
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have an invariant mass within ± 10 MeV of 135 MeV (this is approximately 3 detector
standard deviations); (iv) energy conservation in the detected event within ± 0.5 GeV; (v)
γ’s from π0 decay should not overlap with charged particles in the GEM detector within
2 cm in both the X- and Y -directions. The charged particles can originate from the same
event, or be accidental beam electrons within the 40 ns time acceptance window. Obtained
efficiencies as a function of Mandelstam t and Q2 for the Primakoff π0 electro-production
are shown in Figs. 12 and 13. The plots show that the efficiency is very significant, 30% or
higher, for the main region of interest, 0.01GeV 2<Q2< 0.3GeV 2.
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Figure 11: Detection efficiency vs scattered electron energy at an incident electron energy
of E0 = 10.5 GeV

The π0 invariant mass resolution, σ ∼ 3.3 MeV, and total event energy resolution,
σ ∼ 150 MeV, are shown in Figs. 14, and 15. The mass resolution is worse than the 2.4 MeV
value obtained in the PrimEx-II analysis because we are using the entire hybrid calorime-
ter, including the lead glass part, whereas PrimEx-II used just the lead-tungstate crystal
insert. The relative Q2 resolution as a function of Q2, ∼ 3 %, is shown in Fig. 16. Man-
delstam t resolution divided by

√
t is shown in Fig. 17. Figs. 18 and 19 show the resolution

in θπ, the angle between the virtual photon beam momentum ~q direction and the neutral
pion momentum ~kπ direction. This resolution is in the 0.02◦-0.03◦ range, close to the reso-
lution obtained in PrimEx-II. Resolutions of this order are more than adequate to resolve
the Primakoff peak from the coherent background (see Fig. 2). The electron scattering
angle resolution will depend on the target thickness. Fig. 20 shows the scattering angle
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Figure 12: Detection efficiency vs Mandelstam t for E0 =1 0.5 GeV, scattered electron en-
ergy range 0.5...4.5 GeV, and Q2 =0.01 GeV2/c2 (black squares), and Q2 =0.1 GeV2/c2 (red
dots).

resolution for a 250µm thick silicon target as a function of the scattered electron energy.

The resolution roughly follows a
0.024◦

(Ee[GeV ])0.85 dependence, shown by the dashed line in

the figure.
Fig. 21 shows the Primakoff differential cross section integrated over scattered electron

solid angle and energy (within 0.5–4.5 GeV range) as a function of the π0 production angle.
The corresponding simulated π0 yield scaled to the proposed 60 days of running is shown
in Fig. 22; the plot doesn’t include the projected yield from nuclear coherent production.
There is a shift in the maximum of the Primakoff distribution from 0.02◦ to 0.04◦ due to
resolution.

We conclude that the proposed experiment entirely complements the BESIII and CELLO
measurements in covering the low Q2 region with good acceptance and resolution.
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Figure 13: Detection efficiency integrated over Mandelstam t vs Q2 for E0 = 10.5 GeV, and
scattered electron energy range 0.5...4.5 GeV
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Figure 19: Resolution in θπ vs scattered electron energy, at E0 = 10.5 GeV
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Figure 22: Simulated π0 yield scaled to the proposed 60 days of running statistics as a
function of π0 production angle. Yields from coherent production are not included.
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Table 1: PRad runs used for cross-checking trigger rates and their parameters
PRad
run
number

target Beam
current
[nA]

Beam
energy,
[GeV]

trigger
threshold,
[GeV]

prescale
factor

DAQ
live-
time

Trigger
rate
[kHz]

1495 H gas 55 2.15 0.7 0 89% 3.97

1501 carbon 1 2.15 0.7 2 91% 8.86

1515 empty 55 2.15 0.7 0 98% 0.67

6 Trigger rates and radiation dose

To estimate trigger rate and radiation dose in the calorimeter we have performed simula-
tions of electromagnetic processes in the target and their effect on HyCal response using
GEANT program package.

The main contributions to the background rate are from (i) delta electron production,
and (ii) multiple scattering in the target, the latter causing the incident beam to interact
occasionally with the inner layer of the calorimeter. Bremsstrahlung production also con-
tributes to the background, with a rate smaller than the other two backgrounds. Rates
have been estimated based on the luminosity proposed to PAC 48 in our letter of intent:
25µm silicon target and 100 nA electron beam current. Since the multiple scattering affect
grows slower than linear with increasing target thickness, we tested several combinations
of target thickness and beam current while keeping the product of the two constant to
see how best to optimize the experiment. The main limiting factor for the product is the
channel rate in the inner-most part of HyCal, caused primarily by the scattered incident
electron beam. To keep this contribution at an acceptable level, we plan to increase the
thickness of the tungsten absorber installed in front of the central HyCal crystals from 6 to
15 cm, and expand the transverse size of the absorber from 4× 4 to 6× 6 HyCal modules.
Fig. 23 shows calorimeter module rates for the most background loaded layers as a function
of target thickness and beam current, with the product being held fixed. Even with the
increased absorber thickness the rate in the most inner layer of HyCal is still too high –
more than 2 MHz for the thinnest target, and caused primarily by the scattered incident
beam hitting the central crystals. Therefore, we propose to turn off HV for this layer.
The rate in the second inner layer protected by the enlarged absorber is acceptable, within
250 kHz.

To cross-check our trigger rate calculations we have changed geometry setup (target,
tungsten absorber) to the PRad experiment and compared the obtained values with the
observed during PRad run. We have selected three PRad runs with hydrogen gas, empty,
and carbon targets installed (table 1).

The simulation results show reasonable agreement with the observed rates. Table 2 shows
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Table 2: Comparison of PRad trigger rates with Monte-Carlo simulation
Target Beam

current
[nA]

Beam
energy,
[GeV]

trigger
threshold,
[GeV]

Observed
trigger
rate [kHz]

Simulated
trigger
rate [kHz]

H2 gas, 1.875×1018 atoms
cm2 55 2.15 0.7 3.8 2.8

carbon, 1µm 1 2.15 0.7 29.2 12

this comparison, the measured rates were normalized to 100 % DAQ livetime, no trigger
prescale factor, and empty target rate subtracted. The discrepancy with the carbon target
could be caused by very small thickness, and lack of information about it: we were unable
to find any related measurement data. We also want to note here, that single Moller
scattering was responsible for the main part of trigger events in PRad, but for the proposed
experiment it can not open trigger due to its kinematics and higher trigger threshold, and
beam multiple scattering for large angles gives the main contribution.

Fig. 24 shows the radiation dose rate for layers in HyCal. For the inner-most layer the
radiation dose is from 8 to 10 rad/hr if not considering the 50µm target, and 4 to 6 rad/hr
for the next four outer layers. According to studies [29, 30] this may result in a 2%–5%
light yield degradation in the module due to the radiation effects.

Fig. 25 shows the calorimeter trigger rate for a simple 4 GeV total energy threshold for
several combinations of target thickness and beam current, at fixed luminosity. The trigger
rate is estimated to be approximately 250 kHz, which is unworkable for the experiment.
For that reason we require the implementation of the more sophisticated trigger scheme
described in section 4.3.

Fig. 26 shows the estimated trigger rate when two or three clusters are required in the
calorimeter, each cluster with energy greater than 0.3 or 0.4 GeV, and a total energy sum
of 4 GeV or greater. Clusters are defined as simple 3 × 3 module areas in HyCal which
may not intersect with each other. In this case the trigger rate reduces to 25 kHz at the
highest and 4 kHz at the lowest, which can be handled by the Hall-B DAQ system. Such
trigger logic can be organized and requires the calorimeter readout electronics upgrade
with flash-ADCs [31].

Using HyCal energy deposition in the trigger requires a gain equalization procedure to
avoid systematics related to the trigger inefficiency. This will be done by placing HyCal
on the transporter and scanning in the low intensity photon beam produced in the photon
tagger with the electron beam energy reduced to about 5 GeV. This procedure has been
performed previously during the PrimEx and PRad experiments and takes about 3 days of
beam time and 3 days for placing HyCal on the transporter and back.

In summary, we propose to switch off HV for the inner-most layer in HyCal, increase
the tungsten absorber transverse size by factor of 1.5, and thickness by 2.5. The trigger
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should be configured to require two or three clusters of energy in the calorimeter, each with
energy greater than 0.3 or 0.4 GeV, and with a total energy sum requirement of 4 GeV.
Running with a 250µm Si target and 10 nA beam current gives an estimated trigger rate
in the 3.5 to 20 kHz range. The estimated DAQ trigger rates and radiation dose to the
HyCal modules are estimated to be acceptable for running the experiment.

Figure 23: Estimated HyCal module rates. Squares – most inner HyCal layer around the
beamline, circles – the seond inner layer.
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Figure 24: Estimated radiation dose rate per hour. Solid squares – most inner HyCal layer
around the beamline, open squares – the third inner layer (first unshielded layer), open
circles – area outside the third inner layer.

Figure 25: Estimated HyCal trigger rates for the simple total energy sum trigger with the
threshold of 4 GeV
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Figure 26: Estimated trigger rates for events with total energy deposition in HyCal more
than 4 GeV and at least two clusters (top), or three clusters (bottom) found. The minimum
cluster energy is 0.3 GeV (solid squares), or 0.4 GeV (open squares).
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7 Data Rates and beam time

7.1 Signal yield

To estimate the integral event rate for the Primakoff events we ran MC simulations with
the following fixed parameters and intervals:

• Target: 250µm silicon

• Beam energy: 10.5 GeV

• Beam current: 10 nA

• Angular range of the scattered electrons: > 0.5◦

• Energy range of the scattered electrons: 0.5÷ 4.5 GeV

• Full range of expected Q2 values up to 1 GeV2

• γs from neutral pion decays should have energy at least 0.5 GeV, and not overlapped
with any charged particle in the GEM detectors

The total Primakoff cross section integrated over the scattered electron energy range
of 0.5...4.5 GeV is estimated to be ∆σ= 0.65 · 10−3 µb. With these numbers and sim-
ulated geometrical acceptance, the Primakoff event rate in the proposed experiment is
≈ 1000 events/day or ≈ 60,000 events/60 days. Therefore, for an estimated 60 days of beam
time we will be able to accumulate approximately 60 K useful events over the Q2 range
from .003 to 0.3 GeV2.

7.2 Signal-to-background in two-photon invariant mass distributions

There are two main contributions to the background: electromagnetic and hadronic.
To estimate the backgrounds from electromagnetic processes extensive studies have

been performed: 6×1015 events of the electron beam interacting with the 250µm thick
silicon target have been simulated. This corresponds to about 26.5 hours of 10 nA beam
current. Events were sampled by 40 ns bunches with 2,500 events per bunch. Bunches with
at least 7.5 GeV total energy deposition in the calorimeter and 3 particles each with a
minimum energy of 50 MeV going into the calorimeter acceptance (including the absorber
area) have been recorded for further processing. The selected events have been propagated
through the experimental setup and reconstructed. During reconstruction we assumed that
charged particles (mostly electrons) can be misidentified as neutrals with 1% probability,
which is a reasonable estimation based on our previous experience with the PRad GEM. In
the reconstructed event we selected particles with energy greater than 0.5 GeV, and required
that there should be at least two neutral particles for π0 reconstruction and a third one
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Figure 27: Invariant mass of two neutral clusters in the calorimeter. Expected statistics for
one day of running. Open histogram – Primakoff π0, red solid histogram – electromagnetic
background

(mimicking the scattered electron) with the total energy of triplet within a ± 1 GeV window
around the beam energy. The result of this background simulation for the invariant mass
of the false π0 candidates is shown in Fig. 27. We put the expected events from Primakoff
production for the same running time, one day of running, on the same plot for comparison.
We note that the calorimeter timing resolution obtained during the PrimEx experiment
was better than 2 ns, which should suppress most of the background obtained with the
±20 ns timing window shown in Fig. 27. The dependence of the number of background
events as a function of the coincidence time window is shown in Fig. 28.

The main hadronic backgrounds are from π0 and ω meson (with “forward” ω →
π0γ decay) photo-production with the incident real photon produced by bremsstrahlung
in the target. To pass the analysis selection criteria these processes must have a comple-
mentary electron that satisfies the energy conservation condition. The electron in the event
could be either an incident beam electron rescattered in the target, or any background elec-
tron that’s accidentally in time and satisfies energy conservation with the π0, i.e. within
3σ of the apparatus energy resolution. The virtual photon beam angle in the lab frame has
values in the range from 0 up to ∼ 1◦. The direct π0 photoproduction cross section is well
studied [1] and has cross section of ∼ 1.5µb (at 5 GeV photon beam energy) if integrated
from 0 to 2.4 ◦ angle of the pion. With the proposed experimental setup we estimate the
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Figure 28: Dependence of the number of electromagnetic background events underneath
π0 mass peak as a function of the coincidence time window size

background yield contribution from this process to our data within 50 events for the entire
run. ω meson photoproduction cross sections have values of ∼ 30µb (coherent mechanism),
and ∼ 70µb for the incoherent contribution [32, 33]. Even this source has a significantly
higher cross section, it is suppressed by ω → π0γ decay branching and, in addition, the
scattered electron can not satisfy the energy conservation (only accidental scattered beam
electrons can be coupled with such pions to pass through analysis criteria). Our estima-
tion for this background yield contribution is below 350 events for the 60 days of running.
Thus we expect the total hadronic background contribution to be within a percent level.
This contribution will be subtracted using well-known production parameters affect the
measurement systematics well below percent level.

8 Cross section normalization

In addition to the direct electron beam flux measurement, which we expect to have an
uncertainty at sub-percent level, we will use Moller scattering for the additional normal-
ization. This process is well studied and can easily be measured with very high statistics.
It has a very distinct signature: relationship between scattered electron energy and angle.
The setup provides the excellent acceptance for such measurement by detecting one of two
scattered electrons. Fig. 29 shows relationship between scattering angle and energy for the
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Figure 29: 2-dimensional distribution of Moller scattering electrons energy and angle.
Arrows show regions corresponding to absorber and lead glass part of the calorimeter.

outgoing electrons. We will setup an additional total energy deposition in the calorimeter
trigger to record such events with the threshold of ∼1 GeV for the inner part (12x12 mod-
ules) and ∼ 0.2 GeV for the outer part, which will be prescaled by 3 orders of magnitude.
The exact energy thresholds and scale factors will be briefly optimized during commission-
ing run after the gain equalization procedure. The Moller cross section measurement will
have the same level of the systematic error budget components value (setup acceptance,
calorimeter energy response, target properties) as we observed during the neutral pion
photoproduction cross section measurement [1] (0.7...0.8%). In conjunction with the direct
beam flux measurement we expect to have the luminosity uncertainty control at the sub
percent level.

9 Radiative corrections

There are two types of radiative effects to consider in the eA → e′π0A reaction. The
first is external radiation, which occurs when the incoming or outgoing electron radiates a
bremstrahlung photon when passing through the target. In the case of external radiation
photon emission is incoherent with the electroproduction amplitude. External radiation
can be modeled with GEANT, and this process has been turned on in our experiment
simulation.
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The second type of radiative effect is internal radiation, where a photon is emitted from
the incoming or outgoing electron coherently in the electroproduction amplitude. To model
this process in our simulation we utilize the approach given by Mo and Tsai [34], where the
probability for internal radiation to occur is given by an effective internal radiator. The
effective radiation length for internal radiation is given by,

tinitial = tfinal =
3

4

α

π

[
ln
Q2 + 2m2

e

m2
e

− 1
]

(13)

This method provides a tractable approach for calculating acceptances and resolutions for
proposal development, and was incorporated into our simulation.

For both external and internal radiation the emitted photons are strongly peaked in
the direction of the radiating electron, θγ ≈ me/Eγ . Because the experiment doesn’t use
a magnetic field to bend the scattered electron, energies of the scattered electron and
radiated photon are summed into the same energy cluster in HYCAL. Therefore, radiative
corrections for the scattered electron are small compared to the incident electron, where
the radiated photon goes down the beam-line and is lost.

Our plan for analysis is to accurately model the energy distribution of radiated electrons
in the simulation using the technique of effective internal radiators, and/or by numerical
integration of the relevant QED diagrams. The simulation will be used to study the
sensitivity of the TFF parameters Γπ0→γγ , aπ and bπ to internal and external radiation,
and allow us to correct for radiative effects.

10 Results from fitting pseudo-data: projected sensitivity
to the TFF and HLbL

To estimate this experiment sensitivity to the TFF parameters [equation 1], we have simu-
lated data samples with Coulomb [eq. 3], strong coherent [eq. ??] production mechanisms
and their interference. We have taken for the simulations the interference phase value of
1 rad observed in photoproduction on silicon [1]. The expected yield for the proposed lumi-
nosity shown in fig. 30 (for the entire Q2-range) and in fig. 31 (for the selected 0.01 GeV2-
wide Q2-bins), production mechanisms contributions shown in color curves. To extract
TFF parameters, the simulated data were split in 30 bins of Q2: from 0 to 0.3 GeV2, then
the Coulomb yield was normalized to the expected yield from the simulation with TFF set
to 1.

In our analysis we fit the distribution for square root of the resulting ratio (fig.32) with
the simple equation:

√
Y ield ratio = Constant−Slope·Q2+Quadrature term·Q4. For the

expected statistics we are able to extract slope and quadrature parameters (corresponding
to aπ and bπ in eq. 1) with the relative uncertainties of 6 % and 17 %, and the constant term
with an uncertainty of 0.35%. The estimated uncertainty in the constant term corresponds
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Figure 30: Simulated detected yield for π0 electroproduction. Curves show input from
Coulomb (red), strong coherent (blue), and their interference (green) production mecha-
nisms.

to a 0.7% stat. error in the π0 → γγ decay width, and the estimated uncertainty in the
slope term corresponds to a 3% error in the neutral pion electromagnetic transition radius.

Given the Q2 range of the experiment, Q2
max ≈ 0.3 GeV2, and the saturation of

aHLbL−π
0

µ with increasing Q2 cutoff (see Fig. 3), we estimate the experiment can constrain

' 65 % of aHLbL−π
0

µ . Due to the low mass of the π0 relative to the η and η′, aHLbL−π
0

µ is

the dominant contribution to aHLbL−poleµ , with aHLbL−π
0

µ /aHLbL−poleµ ' 0.67.

Propagating errors for Γπ0→γγ , aπ and bπ into the calculation for aHLbL−π
0

µ gives an

uncertainty of ' 6% for aHLbL−π
0

µ integrated to Q2
1,2 < 0.3 GeV2. This estimate does not

include uncertainties in the cπ term in Eqn. 1, nor does it include uncertainties in higher
order terms in the TFF expansion, which to O(Q6) goes as,

Fγ∗γ∗→π0(−Q2
1,−Q2

2) =

√
4Γπ0→γγ
πα2m3

π

[
...+

dπ
m6
π

(
Q6

1 +Q6
2

)
+
eπ
m6
π

(
Q4

1Q
2
2 +Q2

1Q
4
2

)
+ ...

]
(14)

Because of the limited Q2 range of the experiment, the data has little sensitivity to the dπ
term in Eqn. 14, (inclusion of BES-III data into the fit would improve sensitivity), and
little sensitivity to “cross terms” in the TFF expansion, cπ and eπ, due to the small range
in Mandelstam t for the Primakoff reaction.
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Figure 31: Simulated detected yield for π0 electroproduction, and Q2 ranges 0.0–0.01 GeV2

(top left), 0.04–0.05 GeV2 (top right), 0.09–0.10 GeV2 (bottom left), 0.14–0.15 GeV2 (bot-
tom right). Curves show input from Coulomb (red), strong coherent (blue), and their
interference (green) production mechanisms.
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Figure 32: Square root of the realistic yield and yield simulated with the constant TFF=1
ratio split in Q2 bins. Curve shows fit result.

A reasonable approach for evaluating aHLbL−π
0

µ is to use the LMD+V TFF [18] to fix
terms unconstrained by experiment. Table 3 shows the LMD+V TFF expansion to O(Q6).
Because the O(Q4) terms bπ and cπ are of comparable size, as are the O(Q6) terms dπ
and eπ, one shouldn’t neglect the cross terms cπ and eπ in the TFF Q2 expansion. The
4th column of Table 3 shows the fractional change in aHLbL−π

0

µ integrated over Q2
1,2 <

0.3 GeV2 relative to the fractional change in the LMD+V expansion terms. This ratio
gives the “sensitivity” of aHLbL−π

0

µ to the LMD+V expansion terms. Because aHLbL−π
0

µ

is proportional to Γπ0→γγ , the sensitivity of aHLbL−π
0

µ to Γπ0→γγ is maximal at 1.0. The

sensitivity of aHLbL−π
0

µ to aπ is also very significant, of order unity.
Finally we note that the LMD+V model does predict relationships between aπ, bπ and

cπ, so that by measuring two of the parameters it will be possible to constrain the third. We
conclude that a definitive measurement of aHLbL−π

0

µ will require new low-Q2 experimental
data and theoretical modeling.

11 Beam time request

With the expected rates we are requesting 60 days of run time for the physics data taking
at 10.5 GeV electron beam energy and silicon target to have sufficient statistics for the
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Table 3: LMD+V TFF expansion to O(Q6). The 3rd column shows the expansion terms,
which are dimensionless except in the case of Γπ0→γγ . The 4th column shows the fractional

change in aHLbL−π
0

µ integrated over Q2
1,2 < 0.3 GeV2 relative to the fractional change in

the LMD+V expansion term.

Expansion term O(Q2) value
∆aHLbL−π

0
µ

aHLbL−π
0

µ

/
∆term
term

Γπ0→γγ 1 7.802 eV 1.00

aπ O(Q2) .0303 -0.695

bπ O(Q4) .000917 0.235

cπ O(Q4) .00108 0.106

dπ O(Q6) −2.75× 10−5 -0.106

eπ O(Q6) −3.38× 10−5 -0.0577

precise extraction of the neutral pion form factor parameters. We will need 5 more days
for setup checkout, tests and gain equalization procedure at 5.5 GeV beam energy, and
energy change. We will also need 2 days of running without the target to use this statistics
for background subtraction. With that, we are requesting a total of 67 days to perform
this experiment and extract the neutral pion transition form factor parameters.
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12 Summary of the proposed experiment and its impact on
studies of fundamental symmetries

Measurements of the neutral pion transition form factor (TFF) in the low-Q2 space-like
region can determine two key observables in low-energy strong-interaction physics, (i) the
neutral pion radiative width Γπ0→γγ , predicted by the chiral anomaly, and (ii) the neutral
pion transition radius. The neutral pion TFF is also very important in constraining and
allowing for calculations of the hadronic light-by-light scattering contribution to the muon
anomalous magnetic moment.

The measurement of the π0 TFF through the Primakoff reaction with virtual incident
photons will run using the PRad-II setup in Hall B. Both the scattered electron and the
two decay photons will be detected in HYCAL, with GEMs used for electron tracking.
The JLab flash-ADC system should be used for triggering and data taking. The proposed
measurement has sensitivity to the TFF over a Q2 range from .003 - 0.3 GeV2, allowing a
clean determination of the slope and curvature parameters in the TFF, and complementing
the spacelike BESIII and CELLO measurements at Q2 > 0.3 GeV2, and Dalitz decay
measurements in the timelike region.

The Γπ0→γγ extraction procedure and experimental setup are very similar to the PrimEx
photo-production measurement [1]. Relative to PrimEx, we expect an improvement in the
largest contributions to the total PrimEx systematic error: beam flux (electron beam flux
measurements have better precision than photon flux measurements), and yield extraction
(the PRad vacuum box eliminates downstream beam interactions, which were responsible
for the main non-resonant background for Primakoff photo-production in PrimEx). Uncer-
tainties in remaining items in the overall systematic error (neutral pion production theory,
acceptance, target, trigger efficiency) have smaller contributions to the overall systematic
error, and are expected to be about the same as for PrimEx. Thus we expect the systematic
uncertainty in the Γπ0→γγ measurement to be approximately 1.4% or better.

The TFF slope and curvature parameters aπ and bπ have statistical uncertainties of
approximately 7% and 20% respectively for the expected Primakoff yield. Unlike the
extraction of Γπ0→γγ , the extraction of these parameters doesn’t require knowledge of
the absolute luminosity, and is not affected by its uncertainty. The main contributions
here are the detection efficiency uncertainty and contributions from higher order terms in
equation 1. The expected systematic errors for aπ and bπ are well below the statistical
uncertainties. The estimated uncertainty in the slope term aπ corresponds to a 3% error
in the neutral pion electromagnetic transition radius.

One of the largest uncertainties in the Standard Model prediction for the muon anoma-
lous magnetic moment is hadronic light-by-light scattering (HLbL). The largest contri-
bution to HLbL comes from the pseudo-scalar meson poles, which critically depend on
knowledge of the pseudo-scalar meson TFFs in the low-Q2 region. Due to its light mass,
the π0-pole is ' 67% of the total pseudo-scalar pole contribution to HLbL. By measuring
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Figure 33: Momentum dependence of the π0 TFF. Preliminary data from BESIII[21] (blue
histogram), PrimEx measurement (red point at Q2 = 0), and the projected proposed mea-
surement (black histogram).

the π0 TFF over the region Q2 ≈ .003 to 0.3 GeV2 where no data currently exists, the pro-
posed experiment will constrain approximately 65 % of the π0-pole contribution to HLbL.
The projected errors in Γπ0→γγ , aπ, and bπ give an estimated uncertainty of 6 % in the
π0-pole contribution to HLbL integrated to Q2 = 0.3 GeV2.
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A Strong π0 electroproduction

In this section we present S. Gevorkyan’s calculation of strong π0 electroproduction from
nuclear targets.

The neutral pion can be produced in a coherent nuclear photoproduction process via the
ω and ρ meson exchanges. The nuclear coherent electroproduction amplitude reads [35]:

M(eA→ eπ0A) = jµ(q)
−i
q2
Jµ(t) (15)

where the lepton current jµ(q) = i eū(k2)γµu(k1) is the amplitude of photon radiation by
electron e→ e′γ, whereas the hadronic current Jµ(t) is proportional to the vector product

[~q × ~kπ]. k1, k2, kπ, q, and t are 4-momenta of beam electron, scattered electron, pion,
virtual photon beam, and Coulomb photon transferred to a nucleus correspondingly. The
amplitude of π0 photoproduction is a product of hadronic current and Coulomb photon
polarization M(γA → π0A) = ~ε ~J(t). Thus to transfer from photoproduction to electro-
production it is enough to change the photon polarization vector with the lepton current.
The contribution from ω exchange to the π0 photoproduction amplitude on nucleon reads [35]:

M(γN → π0N) = i e
gωπγ
mπ

gωNN Rω ~ε [~q × ~kπ] 2mN (16)

The contribution from ρ exchange is proportional to the difference between number of
neutrons and protons (N−Z) as the amplitudes of the photoproduction on proton and
neutron by ρ exchange have opposite signs due to isospin one. Thus for symmetric nucleus
its contribution is zero. Nevertheless for heavy nuclei such as lead it can be essential and
we add it here. As a result the strong coherent cross section has the form:

d3σS
dE2dΩ2Ωπ

=
σMQ

4

πm2
π

β−π 1

Eπ
|FN (t)|2E1E2sin

2 θe
2
sin2θπ |ALω + (Z −N)Lρ|2 (17)

Lω =
gωπγgωNN

4π
Rω; Lρ =

gρπγgρNN
4π

Rρ (18)

Here we use the same notations as in Equation 3, and relevant constants g and R are
described in [35].

The incoherent π0 electroproduction cross section can be calculated using connection
between the process e(k1)+A(p1)→ e(k2)+π0(k)+A′(p2) and the incoherent process of π0

production off nucleus by real photon γ(q) +A→ π0(k) +A′ [36]:
dσinc

dE2dΩ2dΩπ
= Γ× dσinc

dΩπ
,

where Γ =
α

2π2
E2

E1

|~q|
Q2

1
1−ε , ε = 1 / (1 + 2 |~q|

2

Q2 tan
2(θe/2)). The effects of the electron-photon

vertex and the photon propagator are contained in the electrodynamics term Γ. The

incoherent photoproduction cross section term
dσinc

dΩπ
is similar to the equation 27 in [37].
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B Pseudo-scalar pole contribution to (g − 2)µ

In this section we present results relating to the pion pole contribution to HLbL, and the
workings of the code used to calculate aHLbL:π0

µ . The requirements to run the code are:

• C++

• CERN Root

• GSL

• Make

B.1 Background

Our ultimate goal is to calculate the pseudoscalar pion-pole contribution aHLbL:π0

µ , which
can be found through the following equation:

aHLbL:π0

µ =
(α
π

) [
aHLbL:π0(1)
µ + aHLbL:π0(2)

µ

]
where α is the fine structure constant. The two terms on the right both have triple integral
representations:

aHLbL:π0(1)
µ =

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτw1(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2

1,−(Q1+Q2)2)Fπ0γ∗γ∗(−Q2
2, 0)

(19)

aHLbL:π0(2)
µ =

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτw2(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2

1,−Q2
2)Fπ0γ∗γ∗(−(Q1+Q2)2, 0)

(20)
where w1 and w2 are weighting functions:

w1(Q1, Q2, τ) =

(
−2π

3

)√
1− τ2

Q3
1Q

3
2

Q2
2 +m2

π

I1(Q1, Q2, τ)

w2(Q1, Q2, τ) =

(
−2π

3

)√
1− τ2

Q3
1Q

3
2

(Q1 +Q2)2 +m2
π

I2(Q1, Q2, τ)

The definitions of I1 and I2 are quite complex, so they are omitted for now. Their exact
definitions can be found in the equation appendix at the end of this document, as well as
a table of all relevant constants.

The following figure contains plots of the weighting functions with various fixed values
of Q1 and Q2 while varying τ (note that the y-axis on the right plot is logarithmic):
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The integrals also involve the on-shell transition form factor for the pion. In particular,
we need the lowest meson dominance plus vector parameterization, or LMD+V form factor:

FLMD+V
π0γ∗γ∗

(q2
1, q

2
2) =

Fπ
3

q2
1q

2
2(q2

1 + q2
2) + h2q

2
1q

2
2 + h5q

2
1q

2
2 + h5(q2

1 + q2
2) + h7

(q2
1 −M2

V1
)(q2

1 −M2
V2

)(q2
2 −M2

V1
)(q2

2 −M2
V2

)
(21)

Descriptions of all relevant constants can be found at the end of the document.

B.2 Pion-Pole Contribution Calculations

In order to calculate the pion pole contribution, we must first compute two triple integrals.
Of course, it would be impossible to do this by hand given the complexity of the integrands,
so we resort to numerical methods. The standard Riemann sum or trapezoid rule algorithms
are not be the best course of action however, since as the number of dimensions d in an
integral increases they run in O(nd). A better algorithm would be Monte Carlo integration,
which runs in O(n) regardless of the number of dimensions, making it well-suited for
high-dimensional integrals. Monte Carlo integration works by evaluating the integrand at
random points in the domain of integration in order to compute the average value of the
function over the domain. This number is then multiplied by the ”volume” of the domain
of integration to produce the final result. A naive algorithm uses uniform sampling over
the whole domain, while more sophisticated algorithms such as MISER and VEGAS use
stratified and importance sampling to place samples in areas which decrease the overall
variance of the result.

Although the upper bounds of integration on Q1 and Q2 are both∞, we do not need to
integrate out this far in practice to get an accurate result. Both of the weighting functions
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approach 0 as Q1, Q2 →∞, so a much smaller upper bound of 20 can be used.
For implementation, GSL provides many optimized Monte Carlo integration algorithms

in C++. Using the VEGAS algorithm with 40 million samples and a momentum cutoff of
20, we obtain the result

aHLbL:π0

µ:LMD+V = 62.9201422692142× 10−11

which agrees with the value calculated by Nyffeler of 62.9× 10−11.

B.3 Low Momentum Expansion

Another topic of interest is the low momentum form factor expansion, which approximates
the LMD+V form factor for sufficiently small Q1 and Q2. The Q6 expansion is:

FQ6(−Q2
1,−Q2

2) =
1

4π2Fπ

[
1− a(Q2

1 +Q2
2) + b(Q4

1 +Q4
2) + cQ2

1Q
2
2

+d(Q6
1 +Q6

2) + e(Q4
1Q

2
2 +Q2

1Q
4
2) + · · ·

] (22)

This expansion is valid in the region Q2
1 < 0.1, Q2

2 < 0.1. Below is a graph of the LMD+V
form factor along with the Q4 and Q6 expansions.

The two expansions are quite accurate in low momentum regions. We can obtain a
measure of how accurate they are by performing the integrals in equations (1) and (2) and
calculating aHLbL:π0

µ using a small momentum cutoff of Q1,2 < 0.1. The following result
used 40 million samples per integral:
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Integration to Q < 0.1 with 40,000,000 samples

Integral 1 (LMD+V): 0.001005460894 Sigma: 1.864345197e-08

Integral 2 (LMD+V): 0.0001717746828 Sigma: 4.577028494e-09

Integral 1 (Q4) : 0.001005481982 Sigma: 1.832570684e-08

Integral 2 (Q4) : 0.000171768857 Sigma: 4.722432529e-09

Integral 1 (Q6) : 0.001005465541 Sigma: 1.846705857e-08

Integral 2 (Q6) : 0.0001717705784 Sigma: 4.358205314e-09

Final LMD+V : 1.475399897e-11

Final Q4 : 1.475419025e-11

Final Q6 : 1.475400577e-11

% Error Q4 = 0.001296464429

% Error Q6 = 4.605865611e-05

The percent error is extremely small, so we can be confident that these expansions
accurately model the LMD+V form factor. Even when we integrate out to the Q < 0.55
region, the Q6 expasion is still reasonably accurate:

Integration to Q < 0.55 with 40,000,000 samples

Integral 1 (LMD+V): 0.03059591231 Sigma: 1.143014661e-06

Integral 2 (LMD+V): 0.001228622807 Sigma: 7.092076856e-08

Integral 1 (Q4) : 0.03445752339 Sigma: 1.29445538e-06

Integral 2 (Q4) : 0.001255706317 Sigma: 7.560896752e-08

Integral 1 (Q6) : 0.0292823835 Sigma: 1.31088181e-06

Integral 2 (Q6) : 0.001222610122 Sigma: 7.34236183e-08

Final LMD+V : 3.98848937e-10

Final Q4 : 4.475849735e-10

Final Q6 : 3.823114535e-10

% Error Q4 = 12.21917171

% Error Q6 = 4.146302504

Additionally, we are interested in the parameters a, b, c, d, e, and the constant Γπ0→γγ′ .
We can find the uncertainty in these values by calculating the partial derivatives of the
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pseudoscalar pion pole contribution aHLbL:π0

µ with respect to each parameter. We can do
this by by using the standard two-sided finite difference algorithm for derivatives:

Let f : R6 → R be a function that takes the parameters a, b, c, d, e,Γπ0→γγ′ as input
and outputs the value of the pseudoscalar pion pole contribution using the Q6 form factor
expansion. If we wanted to find the uncertainty in a, for example, we would need to

calculate
∂f

∂a
, which using the two-sided finite differnce is:

∂f

∂a
≈
f
(
a(1 + p), b, c, d, e,Γ

)
− f

(
a(1− p), b, c, d, e,Γ

)
2ap

where 0 < p << 1 is some small percent offset. In this case, we would choose all parameter
values to be their mean value, as in the table of constants. Ideally we want p to be as
small as possible, but due to the limitations of floating point arithmetic if p is too small
we introduce floating point errors into the calculation. On the other hand, if p is too large
the approximation of the partial derivative becomes less valid. In an attempt to mitigate
these errors, we will calculate the partials for each parameter for a range of percent offsets
and compare them to see if they agree. We find:

Integration up to Q < 0.32 with 10,000,000 samples

Partials - parameters varied by 0.25%

a : -3.3649414139212751e-11

b : 6.5597577850400077e-13

c : 7.5336493834179759e-13

d : -2.2389899845111552e-14

e : -2.5921871988282577e-13

gamma : 0.028048597506709651

Partials - parameters varied by 0.5%

a : -3.4449383778532745e-11

b : 3.4142804377747982e-12

c : 8.8450944603176724e-13

d : 2.8415787365649684e-15

e : -9.0179242866092002e-14

gamma : 0.028048597506709985
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Partials - parameters varied by 0.75%

a : -3.3191362216371211e-11

b : 2.5755926746937237e-12

c : 8.9698494346664814e-13

d : 5.5273532206700047e-13

e : 1.1963893088477835e-13

gamma : 0.028048597506711213

Partials - parameters varied by 1%

a : -3.2643828344676348e-11

b : 2.7937088821432139e-12

c : 7.6711187905363668e-13

d : 2.4753257230670531e-13

e : 3.3237715190804097e-14

gamma : 0.028048597506710987

Partials - parameters varied by 2%

a : -3.3252659401737983e-11

b : 2.5268070693977975e-12

c : 8.0415729114617521e-13

d : 6.3470922586978126e-14

e : 3.0352326917181194e-14

gamma : 0.028048597506710987

We see that the parameters a, b, and Γ have good agreement, while c, d, and e have less
agreement. Increasing the integration bound to Q < 0.55 results in better agreement
among all parameters:

Integration up to Q < 0.55 with 10,000,000 samples

Partials - parameters varied by 0.5%

a : -1.64032569337445e-10

b : 3.38827807205793e-11

c : 1.14428571606979e-11

d : 9.08712120200189e-12

e : 4.35623158169835e-12

gamma : 0.0494522072073776

Partials - parameters varied by 1%

a : -1.64967438673216e-10

b : 3.24854023731518e-11

c : 1.1522291345106e-11
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d : 9.46112561685376e-12

e : 3.93324334449662e-12

gamma : 0.0494522072073796

Partials - parameters varied by 2%

a : -1.63683649020039e-10

b : 3.33407981304216e-11

c : 1.26548343516877e-11

d : 9.09222852041125e-12

e : 4.04912057232516e-12

gamma : 0.0494522072073795

B.4 Code Documentation

The subsections here detail what each file does as well as how to compile and run them.
The files themselves are also documented with comments in the code. There are 5 files in
total:

• functions.h

• main.cpp

• error.cpp

• propagate.cpp

• Makefile

B.4.1 functions.h

This file defines the functions and physical constants needed in the HLbL calculation. Such
functions include the form factors and weighting functions.

B.4.2 main.cpp

This program calculates the value aHLbL:π0

µ . It does this using the VEGAS Monte Carlo
integration algorithm (implemented by GSL) to calculate the relevant integrals.

B.4.3 error.cpp

This program calculates the percentage error of the Q4 and Q6 form factor expansions. The
upper integration bounds on Q1 and Q2 can be changed by altering the value of the limit

variable, and the number of samples used in the integration algorithm can be changed with
the calls variable. Since a total of 6 integrals need to be calculated, the MISER algorithm
(implemented in GSL) is used because it is faster than the VEGAS algorithm.
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B.4.4 propagate.cpp

This program computes the partial derivatives of aHLbL:π0

µ with respect to the parameters
a, b, c, d, e, and Γ using the Q6 expansion. The MISER algorithm is used here since many
integrals need to be calculated. The number of samples can be changed by changing the
samples variable, and the integration bound can be changed with the cutoff variable.

B.4.5 Compiling and Running

To compile all of the code, simply run the command make in the same directory as the
Makefile using the command line. This should generate several files. The important ones
are main, error, and propagate (note that these files don’t have extensions since they are
executables). To run the relevant program, type ./<fileName> into the command line.
For example, to run main.cpp, type ./main into the command line. To remove all of the
generated files, run make clean. This will not affect any of the source files.

B.5 Weighting functions and form factors

The functions involved in the calculations are quite complicated, so the details are provided
here.

B.5.1 Weighting Functions

w1(Q1, Q2, τ) =

(
−2π

3

)√
1− τ2

Q3
1Q

3
2

Q2
2 +m2

π

I1(Q1, Q2, τ)

w2(Q1, Q2, τ) =

(
−2π

3

)√
1− τ2

Q3
1Q

3
2

(Q1 +Q2)2 +m2
π

I2(Q1, Q2, τ)

I1(Q1, Q2, τ) = X(Q1, Q2, τ)
[
8P1P2(Q1 ·Q2)− 2P1P3(Q4

2/m
2
µ − 2Q2

2) + 4P2P3Q
2
1 − 4P2

−2P1(2−Q2
2/m

2
µ + 2(Q1 ·Q2)/m2

µ)− 2P3(4 +Q2
1/m

2
µ − 2Q2

2/m
2
µ) + 2/m2

µ

]
−2P1P2(1 + (1−Rm1)(Q1 ·Q2)/m2

µ) + P1P3(2− (1−Rm1)Q2
2/m

2
µ)

+P2P3(2 + (1−Rm1)2(Q1 ·Q2)/m2
µ) + P1(1−Rm1)/m2

µ + 3P3(1−Rm1)/m2
µ

I2(Q1, Q2, τ) = X(Q1, Q2, τ)
[
4P1P2(Q1 ·Q2) + 2P1P3Q

2
2 − 2P1 + 2P2P3Q

2
1 − 2P2 − 4P3 − 4/m2

µ

]
−2P1P2 − 3P1(1−Rm2)/(2m2

µ)− 3P2(1−Rm1)/(2m2
µ)− P3(2−Rm1 −Rm2)/(2m2

µ)

+P1P3(2 + 3(1−Rm2)Q2
2/(2m

2
µ) + (1−Rm2)2(Q1 ·Q2)/(2m2

µ))

+P2P3(2 + 3(1−Rm1)Q2
1/(2m

2
µ) + (1−Rm1)2(Q1 ·Q2)/(2m2

µ))
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Q2
3 = Q2

1 + 2Q1 ·Q2 +Q2
2

Q1 ·Q2 = Q1Q2τ

Pi =
1

Q2
i

, i = 1, 2, 3

X(Q1, Q2, τ) =
1

Q1Q2x
arctan

(
zx

1− zτ

)
x =

√
1− τ2

z =
Q1Q2

4m2
µ

(1−Rm1)(1−Rm2)

Rmi =

√
1 +

4m2
µ

Q2
i

, i = 1, 2

B.5.2 Form Factors

FLMD+V
π0γ∗γ∗

(q2
1, q

2
2) =

Fπ
3

q2
1q

2
2(q2

1 + q2
2) + h2q

2
1q

2
2 + h5(q2

1 + q2
2) + h7

(q2
1 −M2

V1
)(q2

1 −M2
V2

)(q2
2 −M2

V1
)(q2

2 −M2
V2

)

FQ4(−Q2
1,−Q2

2) =

√
4Γπ0→γγ′

πα2m3
π

[
1− a(Q2

1 +Q2
2) + b(Q4

1 +Q4
2) + cQ2

1Q
2
2 + · · ·

]

FQ6(−Q2
1,−Q2

2) =

√
4Γπ0→γγ′

πα2m3
π

[
1−a(Q2

1+Q2
2)+b(Q4

1+Q4
2)+cQ2

1Q
2
2+d(Q6

1+Q6
2)+e(Q4

1Q
2
2+Q2

1Q
4
2)+· · ·

]
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B.6 Constants

Name Symbol Value Units

Fine Structure Constant α 0.0072973525693 -

Pion Mass mπ 0.1349768 GeV/c2

Muon Mass mµ 0.1056583745 GeV/c2

Pion Decay Constant Fπ 0.0924 GeV

Vector Meson Mass 1 MV1 0.77549 GeV

Vector Meson Mass 2 MV2 1.465 GeV

LMD+V Parameter 1 h2 -10.634883404844444 GeV2

LMD+V Parameter 2 h5 6.93 GeV4

LMD+V Parameter 3 h7 -14.827668978756119 GeV6

TFF Expansion Param 1 a 1.6613939123981294∗ GeV−2

TFF Expansion Param 2 b 2.7619453491551749∗ GeV−4

TFF Expansion Param 3 c 3.259027816403921∗ GeV−6

TFF Expansion Param 4 d -4.59258 GeV−6

TFF Expansion Param 5 e -5.58268 GeV−6

? Γ and Γπ0→γγ′ 7.7291993× 10−9 GeV

∗ - The values for the parameters a, b, and c in the table are approximate. Their exact
forms are:

a =
1

M2
V1

+
1

M2
V2

+
h5

h7

b =
1

M4
V1

+
1

M4
V2

+
1

M2
V1
M2
V2

+
h5

h7

(
1

M2
V1

+
1

M2
V2

)

c =

(
1

M2
V1

+
1

M2
V2

)2

+
h2

h7
+ 2

h5

h7

(
1

M2
V1

+
1

M2
V2

)
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